(本小題滿分10分)選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程是,圓C的極坐標方程為
(I)求圓心C的直角坐標;
(Ⅱ)由直線上的點向圓C引切線,求切線長的最小值.
(I);(Ⅱ)
(I)把圓C的極坐標方程利用化成普通方程,再求其圓心坐標.
(II)設直線上的點的坐標為,然后根據(jù)切線長公式轉化為關于t的函數(shù)來研究其最值即可.
解:(I),
,                          ………(2分)
,         …………(3分)
,.…………(5分)
(II):直線上的點向圓C 引切線長是
,
…………(8分)
∴直線上的點向圓C引的切線長的最小值是          …………(10分)
∴直線上的點向圓C引的切線長的最小值是 …………(10分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)過點P(0,0),Q(4,2),R(-1,-3)三點的圓的標準方程式什么?
(2)已知動點M到點A(2,0)的距離是它到點B(-1,0)的距離的倍,求:(1)動點M的軌跡方程;(2)根據(jù)取值范圍指出軌跡表示的圖形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值是    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

能夠使得圓  上恰有兩個點到直線 的距離等于1的 的一個可能值為(   )
A.2B.C.3D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線被圓截得的弦長為4,
的最小值是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知橢圓上的動點到焦點距離的最小值為。以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(2,0)的直線與橢圓相交于兩點,為橢圓上一點, 且滿足
為坐標原點)。當 時,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、圓x2+2x+y2+4y-3=0上到直線x+y+1=0的距離為的點共(   )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

經(jīng)過點作圓的切線,則切線的方程為        (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是直線上的動點,是圓的切線,是切點, 是圓心,那么四邊形面積的最小值是(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案