【題目】已知是定義在上的奇函數(shù).

1)若,求的值;

2)若是函數(shù)的一個零點,求函數(shù)在區(qū)間的值域.

【答案】(1)a=1,b=2;(2)[-7.5,-3].

【解析】試題分析:1)由奇函數(shù)定義域關于原點對稱得(b-3)+(b-1)=0,解得b=2,再由可得;

2是函數(shù)的一個零點,得a=-2,進而得函數(shù)單調性,由單調性求值域即可.

試題解析:

(1) 由 f(x)為奇函數(shù),則(b-3)+(b-1)=0,解得b=2,

.所以4a+2 =6, a=1 .

(2)由條件知,f(-1)=0,∴a+2=0,∴a=-2

,可見f(x)在區(qū)間[2,4]上單調遞減.

所以f(x)的最大值為f(2)=-3,最小值為f(4)=-7.5.

故f(x)的值域為[-7.5,-3].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, 底面,. 分別為的中點. 為側棱上的動點.

(Ⅰ)求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)試判斷直線與平面是否能夠垂直.若能垂直,求的值;若不能垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠每月生產一種投影儀的固定成本為萬元,但每生產臺,需要加可變成本(即另增加投入)萬元,市場對此產品的月需求量為臺,銷售的收入函數(shù)為(萬元),其中是產品售出的數(shù)量(單位:百臺).

(1)求月銷售利潤(萬元)關于月產量(百臺)的函數(shù)解析式;

(2)當月產量為多少時,銷售利潤可達到最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的離心率為 分別為橢圓的上頂點和右焦點, 的面積為,直線與橢圓交于另一個點,線段的中點為.

(1)求直線的斜率;

(2)設平行于的直線與橢圓交于不同的兩點, ,且與直線交于點,求證:存在常數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校共有學生15 000人,其中男生10 500人,女生4500人.為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

(1)應收集多少位女生的樣本數(shù)據(jù)?

(2)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4小時的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù).

1)若,求的值;

2)若是函數(shù)的一個零點,求函數(shù)在區(qū)間的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關鍵詞的次數(shù)為基礎所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網(wǎng)民對該關鍵詞的搜索次數(shù)越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數(shù)變化的走勢圖.

根據(jù)該走勢圖下列結論正確的是( )

A. 這半年中,網(wǎng)民對該關鍵詞相關的信息關注度呈周期性變化

B. 這半年中,網(wǎng)民對該關鍵詞相關的信息關注度不斷減弱

C. 從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差

D. 從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形為正方形,ADB,平面ABC平面BC,AB=AC=,AD=1ABC=45°。

1)求證:AB⊥CD;

2)求點C到平面D的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點A(-,0),B(,0),動點P在y軸上的投影是Q,且.

(1)求動點P的軌跡C的方程;

(2)過F(1,0)作互相垂直的兩條直線交軌跡C于點G,H,M,N,且E1,E2分別是GH,MN的中點.求證:直線E1E2恒過定點.

查看答案和解析>>

同步練習冊答案