分析 根據(jù)函數(shù)的奇偶性的定義,對各個選項中的函數(shù)作出判斷,可得結(jié)論.
解答 解:以下結(jié)論:①f(x)=2-x =${(\frac{1}{2})}^{x}$ 在R上單調(diào)遞減,正確;
∵$g(x)={log_2}\frac{1+x}{1-x}$,g(-x)=log2$\frac{1-x}{1+x}$=-log2$\frac{1+x}{1-x}$=-g(x),故函數(shù)g(x)是奇函數(shù),故②錯誤;
∵F(x)=f(x)f(-x),∴f(-x)f(x)=F(-x)(x∈R),即F(-x)=F(x),故F(x)是偶函數(shù),故③正確;
對于f(x)=2|x|+1,可得f(-x)=2|-x|+1=2|x|+1=f(x),故函數(shù)f(x)是偶函數(shù),故④錯誤,
故答案為:①③.
點評 本題主要考查函數(shù)的奇偶性的判斷方法,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=±$\frac{{\sqrt{5}}}{5}$ | B. | x=±$\frac{{2\sqrt{5}}}{5}$ | C. | y=±$\frac{{\sqrt{5}}}{5}$ | D. | y=±$\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 38 | B. | 20 | C. | 10 | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com