設(shè),且N>1,a+b=1,則必有

[  ]

A.1<a<b
B.a(chǎn)<b<1
C.1<b<a
D.b<a<1
答案:B
提示:

ab=10a1,0b1

00a10b1


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,過原點O斜率為1的直線l與橢圓C相交于M,N兩點,橢圓右焦點F到直線l的距離為
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓上異于M,N外的一點,當直線PM,PN的斜率存在且不為零時,記直線PM的斜率為k1,直線PN的斜率為k2,試探究k1•k2是否為定值?若是,求出定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點在坐標原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設(shè)直線l與拋物線交于A、B兩點,與拋物線的準線交于M點,
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點N.已知點P是拋物線C1′上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C′1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax2-bx+1(a,b∈R),F(x)=
f(x),x>0
-f(x),x<0

(1)如果f(1)=0且對任意實數(shù)x均有f(x)≥0,求F(x)的解析式;
(2)在(1)在條件下,若g(x)=f(x)-kx在區(qū)間[-3,3]是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)已知a>0且f(x)為偶函數(shù),如果m+n>0,求證:F(m)+F(n)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇二模)如圖,已知橢圓C:
x2
4
+y2=1
,A、B是四條直線x=±2,y=±1所圍成的兩個頂點.
(1)設(shè)P是橢圓C上任意一點,若
OP
=m
OA
+n
OB
,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩個動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.

查看答案和解析>>

同步練習冊答案