設由正數(shù)組成的等比數(shù)列,公比q=2,且a1•a2…a30=230,則a3•a6•a9…a30等于   
【答案】分析:先用a3表示出a1,a2,用a6表示出a4,a5,…,用a30表示出a28,a29,然后代入a1•a2…a30=230,可得到a3•a6•a9…a30的值.
解答:解:∵a1=,a2=,a4=,a5=,…,a28=,a29=
由a1a2…a30=230
××…×=230
于是(a3•a6…a303=230×810=260
所以
a3a6…a30=220
故答案為220
點評:本題主要考查等比數(shù)列的基本性質(zhì).屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設由正數(shù)組成的等比數(shù)列,公比q=2,且a1•a2…a30=230,則a3•a6•a9…a30等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設由正數(shù)組成的等比數(shù)列,公比q=3,且a1a2a3a30=330,則a1a4a7…a28=
315
315

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設由正數(shù)組成的等比數(shù)列,公比q=2,且a1•a2…a30=230,則a3•a6•a9…a30等于______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設由正數(shù)組成的等比數(shù)列,公比q=2,且,則等于

A.          B.        C.         D.

查看答案和解析>>

同步練習冊答案