【題目】已知橢圓C:過(guò)點(diǎn)A,兩個(gè)焦點(diǎn)為(-1,0),(1,0)。

(Ⅰ)求橢圓C的方程;

(Ⅱ)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線(xiàn)AE的斜率與AF的斜率互為相反數(shù),證明直線(xiàn)EF的斜率為定值,并求出這個(gè)定值。

【答案】(1)2)直線(xiàn)的斜率為定值

【解析】

試題(1) 由題意,設(shè)橢圓方程為,將代入即可求出,則橢圓方程可求.

(2)設(shè)直線(xiàn)AE方程為:,代入入

,再由點(diǎn)在橢圓上,根據(jù)結(jié)直線(xiàn)的斜率與的斜率互為相反數(shù),結(jié)合直線(xiàn)的位置關(guān)系進(jìn)行求解.

1)由題意,設(shè)橢圓方程為,

因?yàn)辄c(diǎn)在橢圓上,所以,解得,

所求橢圓方程為

2)設(shè)直線(xiàn)方程為,代入

設(shè),,點(diǎn)在直線(xiàn)

,

直線(xiàn)的斜率與直線(xiàn)的斜率互為相反數(shù),在上式中用代替

,

直線(xiàn)的斜率

所以直線(xiàn)的斜率為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,菱形ABCD與正三角形BCE的邊長(zhǎng)均為2,它們所在的平面互相垂直,DF⊥平面ABCDDF.

1)求證:EF//平面ABCD;

2)若∠ABC=∠BCE,求二面角ABFE的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最大值為,其圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為,且的圖象關(guān)于點(diǎn)對(duì)稱(chēng),則下列判斷正確的是( )

A.要得到函數(shù)的圖象,只需將向右平移個(gè)單位

B.函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)

C.當(dāng)時(shí),函數(shù)的最小值為

D.函數(shù)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,左頂點(diǎn)為,過(guò)點(diǎn)A作斜率為的直線(xiàn)l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.

1)求橢圓C的方程;

2)已知點(diǎn)P的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的都有?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說(shuō)明理由;

3)若過(guò)點(diǎn)O作直線(xiàn)l的平行線(xiàn)交橢圓C于點(diǎn)M,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定直線(xiàn)的距離與到定點(diǎn)的距離之比為.

1)求點(diǎn)的軌跡的方程;

2)已知點(diǎn),在軸上是否存在一點(diǎn),使得曲線(xiàn)上另有一點(diǎn),滿(mǎn)足,且?若存在,求出所有符合條件的點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,,為棱上的動(dòng)點(diǎn).

1)若的中點(diǎn),求證:平面;

2)若平面平面ABC,且是否存在點(diǎn),使二面角的平面角的余弦值為?若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與重合),為線(xiàn)段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.

1)證明:平面.

2)三棱錐的體積最大時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)證明:(i;

ii)對(duì)任意對(duì)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在一次期末數(shù)學(xué)測(cè)試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績(jī),被測(cè)學(xué)生成績(jī)?nèi)拷橛?5分到145分之間(滿(mǎn)分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組,,第二組,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)求第七組的頻率,并完成頻率分布直方圖;

(2)用樣本數(shù)據(jù)估計(jì)該校的2000名學(xué)生這次考試成績(jī)的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表該組數(shù)據(jù)平均值);

(3)若從樣本成績(jī)屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差的絕對(duì)值小于10分的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案