【題目】已知拋物線C:y2=2px(p>0)上的點A(4,t)到其焦點F的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點F作直線l,使得拋物線C上恰有三個點到直線1的距離為2,求直線1的方程.
【答案】(I);(II).
【解析】
(Ⅰ)由已知列式求出p的值,則拋物線的方程可求;
(Ⅱ)由題意可知,當直線l的斜率不存在時,C上僅有兩個點到l的距離為2,不合題意;當直線l的斜率存在時,設直線l的方程為y=k(x﹣1),要滿足題意,需使在含坐標原點的弧上有且只有一個點P到直線l的距離為2,且過點P的直線l平行y=k(x﹣1)且與拋物線C相切.設切線方程為y=kx+m,與拋物線方程聯(lián)立,利用判別式為0可得m與k的關系,再由F到直線y=k(x﹣1)的距離為2求得k值,則直線l的方程可求.
(Ⅰ)由拋物線的定義可知|AF|=d=45,
解得:p=2,
故拋物線的方程是:y2=4x;
(Ⅱ)由題意可知,當直線l的斜率不存在時,C上僅有兩個點到l的距離為2,不合題意;
當直線l的斜率存在時,設直線l的方程為y=k(x﹣1),
要滿足題意,需使在含坐標原點的弧上有且只有一個點P到直線l的距離為2,
且過點P的直線l平行y=k(x﹣1)且與拋物線C相切.
設切線方程為y=kx+m,
代入y2=4x,可得k2x2+(2km﹣4)x+m2=0.
由△=(2km﹣4)2﹣4k2m2=0,得km=1.
由,整理得:3k2﹣2km﹣m2+4=0.
即,解得,即k.
因此,直線方程為y.
科目:高中數學 來源: 題型:
【題目】將參加冬季越野跑的600名選手編號為:001,002,…,600.采用系統(tǒng)抽樣方法抽取一個容量為50的樣本,把編號分50組后,在第一組的001到012這12個編號中隨機抽得的號碼為004.這600名選手分穿著三種顏色的衣服,從001到301穿紅色衣服,從302到496穿白色衣服,從497到600穿黃色衣服.則抽到穿白色衣服的選手人數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,四邊形ACC1A1和BCC1B1均為正方形,且所在平面互相垂直.
(Ⅰ)求證:BC1⊥AB1;
(Ⅱ)求直線BC1與平面AB1C1所成角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以坐標原點為圓心且與直線mx﹣y﹣2m+1=0(m∈R)相切的所有圓中,半徑最大的圓的標準方程為( )
A.x2+y2=5
B.x2+y2=3
C.x2+y2=9
D.x2+y2=7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax有極值1,這里e是自然對數的底數.
(1)求實數a的值,并確定1是極大值還是極小值;
(2)若當x∈[0,+∞)時,f(x)≥mxln(x+1)+1恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 .
(1)求該函數的最小正周期;
(2)求該函數的單調遞減區(qū)間;
(3)用“五點法”作出該函數在長度為一個周期的閉區(qū)間上的簡圖.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C1: =1和C2:x2+ =1.P為C1上的動點,Q為C2上的動點,w是 的最大值.記Ω={(P,Q)|P在C1上,Q在C2上,且 =w},則Ω中元素個數為( )
A.2個
B.4個
C.8個
D.無窮個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com