設(shè)動點P在棱長為1的正方體ABCD-A1B1C1D1的對角線BD1上,記=λ.當∠APC為鈍角時,λ的取值范圍是________.

 

 

(,1)

【解析】本題主要考查了用空間向量求直線間的夾角,一元二次不等式的解法,意在考查考生的空間想象能力以及運算求解能力.

為單位正交基底,建立如圖所示的空間直角坐標系D-xyz,則有A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,1),則=(1,1,-1),得=λ=(λ,λ,-λ),所以=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1),=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1),顯然∠APC不是平角,所以∠APC為鈍角等價于·<0,即-λ(1-λ)-λ(1-λ)+(λ-1)2<0,即(λ-1)(3λ-1)<0,解得<λ<1,因此λ的取值范圍是(,1).

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-5橢圓(解析版) 題型:選擇題

已知橢圓C:=1(b>0),直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點,則實數(shù)b的取值范圍是(  )

A.[1,4) B.[1,+∞)

C.[1,4)∪(4,+∞) D.(4,+∞)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-2直線的交點坐標與距離公式(解析版) 題型:填空題

已知直線l1:ax-y+2a=0,l2:(2a-1)x+ay+a=0互相垂直,則實數(shù)a的值是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題

已知點A(3,0),B(0,4),直線AB上一動點P(x,y),則xy的最大值是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-7立體幾何中的向量方法(解析版) 題型:選擇題

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小為60°,則AD的長為(  )

A. B. C.2 D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-7立體幾何中的向量方法(解析版) 題型:選擇題

如圖所示,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.當A1、E、F、C1共面時,平面A1DE與平面C1DF所成二面角的余弦值為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-6空間向量及運算(解析版) 題型:解答題

如圖所示,已知空間四邊形ABCD的每條邊和對角線長都等于1,點E、F、G分別是AB、AD、CD的中點,計算:

(1)·;

(2)·;

(3)EG的長;

(4)異面直線AG與CE所成角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:填空題

設(shè)α、β、γ為彼此不重合的三個平面,l為直線,給出下列命題:

①若α∥β,α⊥γ,則β⊥γ;

②若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ;

③若直線l與平面α內(nèi)的無數(shù)條直線垂直,則直線l與平面α垂直;

④若α內(nèi)存在不共線的三點到β的距離相等,則平面α平行于平面β;

上面命題中,真命題的序號為________(寫出所有真命題的序號).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-2空間幾何體的表面積和體積(解析版) 題型:解答題

一個多面體的直觀圖及三視圖如圖所示:(其中M、N分別是AF、BC的中點)

(1)求證:MN∥平面CDEF;

(2)求多面體A-CDEF的體積.

 

 

查看答案和解析>>

同步練習冊答案