已知各項都是正數(shù)的等比數(shù)列滿足:,

若存在兩項使得,則的最小值為          . 

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•重慶一模)設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,2
Sn
是an+2 和an的等比中項.
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數(shù)m共有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源:福建省三明一中2012屆高三11月學段考試數(shù)學理科試題 題型:044

已知等比數(shù)列{an}的各項都是正數(shù),且2a1+3a2=1,a3是9a2與a6的等比中項,

(Ⅰ)求{an}的通項公式;

(Ⅱ)設數(shù)列{bn}滿足bn,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆重慶市七區(qū)高三第一次調(diào)研測試數(shù)學理卷 題型:解答題

(本小題滿分12分)
設數(shù)列的各項都為正數(shù),其前項和為,已知對任意,的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;
(Ⅲ)設集合,,且,若存在,使對滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學理卷 題型:解答題

(本小題滿分12分)

設數(shù)列的各項都為正數(shù),其前項和為,已知對任意,的等比中項.

(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

(Ⅱ)證明

(Ⅲ)設集合,,且,若存在,使對滿足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年重慶市七區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,2是an+2 和an的等比中項.
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明++…+<1;
(Ⅲ)設集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>恒成立,求這樣的正整數(shù)m共有多少個?

查看答案和解析>>

同步練習冊答案