【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設(shè)

(1)求燈柱AB的高h(用表示);

(2)此公司應(yīng)該如何設(shè)置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長度最?最小值為多少?

【答案】(1);(2)時,所用材料的總長度最小,最小值為.

【解析】

(1)分別在△ABC△ACD中,利用正弦定理即可解出答案;

(2)△ABC中,利用正弦定理求出BC,再利用(1)的結(jié)果和三角函數(shù)的和差公式即可求得答案.

(1)由題意可得∠ADC=CADACD =,∠BCA=,

△ACD中,由正弦定理可得:,

AC=,

△ABC中,由正弦定理可得:

AB=

.

即得.

(2)(1)AC=,AB=

△ABC中,由正弦定理可得:

,

所以.

可得,可得當(dāng),即

即當(dāng)公司設(shè)置的值為時,燈柱AB和燈桿BC所用材料的總長度最小,最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,且點在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)點在橢圓的圖像上運動時,點在曲線上運動,求曲線的軌跡方程,并指出該曲線是什么圖形;

3)過橢圓上異于其頂點的任意一點作曲線的兩條切線,切點分別為不在坐標(biāo)軸上),若直線軸,軸上的截距分別為試問:是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知橢圓的左、右焦點分別為,,點是橢圓的一個頂點,是等腰直角三角形.

1)求橢圓的方程;

2)設(shè)點是橢圓上一動點,求線段的中點的軌跡方程;

3)過點分別作直線,交橢圓于兩點,設(shè)兩直線的斜率分別為,

,探究:直線是否過定點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,短軸長為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,短軸長為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別是,是橢圓外的動點,滿足.點是線段與該橢圓的交點,點在線段上,并且滿足,.

(1)當(dāng)時,用點P的橫坐標(biāo)表示;

(2)求點的軌跡的方程;

(3)在點的軌跡上,是否存在點,使的面積?若存在,求出的正切值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是海岸線OM、ON上兩個碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為,測得,,以點O為坐標(biāo)原點,射線OMx軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過點Q.

1)問游輪自碼頭A沿方向開往碼頭B共需多少分鐘?

2)海中有一處景點P(設(shè)點P平面內(nèi),,且),游輪無法靠近,求游輪在水上旅游線AB航行時離景點P最近的點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)f(x)處取得極大值,則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與P關(guān)于直線對稱.

1)求雙曲線C的方程;

2)設(shè)直線與雙曲線C的左支交于AB兩點,另一直線經(jīng)過AB的中點,求直線y軸上的截距b的取值范圍;

3)若Q是雙曲線C上的任一點,、為雙曲線C的左、右兩個焦點,從的角平分線的垂線,垂足為N,試求點N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案