【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)點(diǎn)在橢圓的圖像上運(yùn)動時(shí),點(diǎn)在曲線上運(yùn)動,求曲線的軌跡方程,并指出該曲線是什么圖形;

3)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)作曲線的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線軸,軸上的截距分別為試問:是否為定值?若是,求出該定值;若不是,請說明理由.

【答案】1 2,曲線的圖形是一個(gè)以坐標(biāo)原點(diǎn)為圓心、為半徑的圓 3)是定值,

【解析】

1)由,再把點(diǎn)坐標(biāo)代入又得一方程,聯(lián)立后可解得得橢圓方程;

2)設(shè),用表示,把代入橢圓方程可得曲線方程,由方程可判斷曲線形狀;

3)由(1)知,設(shè)點(diǎn),由坐標(biāo)可得切線方程,代入點(diǎn)坐標(biāo)于兩切線方程后觀察結(jié)論可得直線方程,求出,計(jì)算,利用在橢圓上可得.

1)由題意得,所以

又點(diǎn)在橢圓上,所以解得

所以橢圓的標(biāo)準(zhǔn)方程為

2)設(shè),則,于是,

由于點(diǎn)在橢圓的圖像上,

所以

整理得,

所以曲線的軌跡方程為

曲線的圖形是一個(gè)以坐標(biāo)原點(diǎn)為圓心,為半徑的圓.

3)由(1)知,設(shè)點(diǎn)

則直線的方程為

直線的方程為

把點(diǎn)的坐標(biāo)代入①②得

所以直線的方程為

所以又點(diǎn)在橢圓上,

所以為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個(gè)公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)圖象的一段,點(diǎn)M到l1、l2的距離分別為8千米和1千米,點(diǎn)N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy,設(shè)點(diǎn)P的橫坐標(biāo)為p.

(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;

(2)若某人從點(diǎn)O沿公路至點(diǎn)P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足,且.

1)求、、;

2)求數(shù)列的通項(xiàng)公式;

3)令,求數(shù)列的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,點(diǎn)到拋物線的準(zhǔn)線的距離為,點(diǎn)上的定點(diǎn),、上的兩個(gè)動點(diǎn),且線段的中點(diǎn)在線段.

1)拋物線的方程及的值;

2)當(dāng)點(diǎn)、分別在第一、四象限時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)點(diǎn)在橢圓的圖像上運(yùn)動時(shí),點(diǎn)在曲線上運(yùn)動,求曲線的軌跡方程,并指出該曲線是什么圖形;

3)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)作曲線的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線軸,軸上的截距分別為試問:是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=sinxcosxcos2x+1

1)求fx)的最小正周期和最大值,并寫出取得最大值時(shí)x的集合;

2)將fx)的函數(shù)圖象向左平移φφ0)個(gè)單位后得到的函數(shù)gx)是偶函數(shù),求φ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】狄利克雷函數(shù)為F(x).有下列四個(gè)命題:①此函數(shù)為偶函數(shù),且有無數(shù)條對稱軸;②此函數(shù)的值域是;③此函數(shù)為周期函數(shù),但沒有最小正周期;④存在三點(diǎn),使得△ABC是等腰直角三角形,以上命題正確的是( 。

A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線過點(diǎn)且與橢圓相交于兩點(diǎn).過點(diǎn)作直線的垂線,垂足為.證明直線軸上的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設(shè)

(1)求燈柱AB的高h(用表示);

(2)此公司應(yīng)該如何設(shè)置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長度最?最小值為多少?

查看答案和解析>>

同步練習(xí)冊答案