已知sinθ=
m-1
2
,求實數(shù)m的取值范圍.
考點:正弦函數(shù)的定義域和值域
專題:三角函數(shù)的求值
分析:由條件利用正弦函數(shù)的值域以及不等式的性質(zhì),求出m的范圍.
解答: 解:∵sinθ=
m-1
2
∈[-1,1],即-1≤
m-1
2
≤1,
求得-1≤m≤3,故要求的實數(shù)m的取值范圍為[-1,3].
點評:本題主要考查正弦函數(shù)的值域,不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)過橢圓C的一個焦點與x軸垂直的直線l與橢圓交于A、B兩點,|AB|與橢圓的焦距相等,則橢圓C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點的直線交雙曲線x2-y2=4
2
于P,Q兩點,現(xiàn)將坐標(biāo)平面沿直線y=-x折成直二面角,則折后PQ長度的最小值等于(  )
A、2
2
B、4
C、4
2
D、3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐的三視圖,則該三棱錐的體積是(  )
A、
6
3
B、
2
6
3
C、
3
6
2
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x+3y+4z=11,則x2+y2+z2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a,b,c滿足a2+b2+c2=1,則3ab-3bc+2c2的最大值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某幾何體的正視圖(主視圖),側(cè)視圖(左視圖)和俯視圖分別是等腰梯形,等腰直角三角形和長方形,則該幾何體表面積為( 。
A、14
B、14+2
2
C、8+8
2
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線的左、右焦點,點P為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右支上的一點,滿足(
OP
+
OF2
F2P
=0(O為坐標(biāo)原點),且|PF1|=
3
|PF2|,則雙曲線離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

編寫程序,輸入4個數(shù),輸出這4個數(shù)的平均數(shù).

查看答案和解析>>

同步練習(xí)冊答案