【題目】楊輝三角是二項式系數(shù)在三角形中的一種排列,在歐洲這個表叫做帕斯卡三角形,帕斯卡是在1654年發(fā)現(xiàn)這一規(guī)律的,我國南宋數(shù)學(xué)家楊輝在1261年所著的《詳解九章算法》一書中出現(xiàn)了如圖所示的表,這是我國數(shù)學(xué)史上的一次偉大成就,如圖所示,在楊輝三角中去除所有為1的項,依次構(gòu)成數(shù)列,2,3,3,46,4,5 ,10 ,10,5,……,則此數(shù)列的前119項的和為__________(參考數(shù)據(jù):,,)

【答案】131022

【解析】

分析“楊輝三角形”的性質(zhì),每一行的數(shù)字和為首項為1,公比為2的等比數(shù)列,除去1之后各行的項的個數(shù)為首項為1,公差為1的等差數(shù)列,其中所求數(shù)列的前119項可以視為,楊輝三角形中前17行中除去1和第17行的最后一個數(shù)之外的項之和,分別計算即可.

n次二項系數(shù)對應(yīng)楊輝三角的第n+1行,例如,系數(shù)分別為1,2,1,對應(yīng)楊輝三角的第三行,令x=1,就可以求出該行的系數(shù)之和,

1行為,第2行為,第3行為,以此類推即每一行數(shù)字和為首項為1,公比為2的等比數(shù)列,則楊輝三角形的前n項和為,

若去除所有的為1的項,則剩下的每一行的個數(shù)為1,2,3,4,……,可以看成構(gòu)成一個首項為1,公差為1的等差數(shù)列,則前n項和

可得當n=14,再加上第15行的前14項時,所有項的個數(shù)和為119,

由于最右側(cè)為2,3,4,5,……,為一個首項為2,公差為1的等差數(shù)列,則第15行的第15項為16,

則楊輝三角的前17項和為,且前17行中有1,

故此數(shù)列的前119項的和為.

故答案為:131022

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中表示不超過的最大整數(shù),下列關(guān)于說法正確的有:______

的值域為[-1,1]

為奇函數(shù)

為周期函數(shù),且最小正周期T=4

在[0,2)上為單調(diào)增函數(shù)

的圖像有且僅有兩個公共點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設(shè)同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),制表如圖:

每名快遞員完成一件貨物投遞可獲得的勞務(wù)費情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務(wù)費的情況,從這10天中隨機抽取1天,他所得的勞務(wù)費記為X(單位:元),求X的分布列和數(shù)學(xué)期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形,四邊形為矩形,且平面與平面互相垂直.若多面體的體積為,則該多面體外接球表面積的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的有( )

①常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;②在中,若,則為直角三角形;③若為銳角三角形的兩個內(nèi)角,則;④若為數(shù)列的前項和,則此數(shù)列的通項.

A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=,其中a為常數(shù).

1)當a1時,求fx)的最大值;

2)若fx)在區(qū)間(0e]上的最大值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓上的動點,點軸上的投影為,點為線段AB的中點,設(shè)點的軌跡為

1)求點的軌跡的方程;

2)已知直線交于兩點,,若直線的斜率之和為3,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式,其中;

1)試求不等式的解集;

2)對于不等式的解集,記(其中為整數(shù)集),若集合為有限集,求實數(shù)的取值范圍,使得集合中元素個數(shù)最少,并用列舉法表示集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制,均為整數(shù))分成 , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:

(1)求分數(shù)內(nèi)的頻率,并補全這個頻率分布直方圖;

(2)從頻率分布直方圖中,估計本次考試成績的中位數(shù);

(3)若從第1組和第6組兩組學(xué)生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.

查看答案和解析>>

同步練習(xí)冊答案