已知a>0,求證: -≥a+-2.
證明略
證明 要證-≥a+-2,
只要證+2≥a++.                                   2分
∵a>0,故只要證≥(a++2,                  6分
即a2++4+4
≥a2+2++2+2,                                      8分
從而只要證2,                             10分
只要證4≥2(a2+2+),即a2+≥2,而該不等式顯然成立,
故原不等式成立.                                               14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

不能為同一等差數(shù)列的三項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形ABCD所在平面與正方形ABEF所在平面互相垂直,M為AC上一點,N為BF 上一點,且有,設(shè)
(1) 求證:
(2) 求證: ;
(3) 當(dāng)為何值時,取最小值?并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下列命題是真命題,還是假命題,用分析法證明你的結(jié)論.命題:若,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,,其中,求數(shù)列的通項公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

知數(shù)列滿足, ,
求證:是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列表述:①綜合法是執(zhí)因?qū)Ч;②綜合法是順推法;③分析法是執(zhí)果索因法;
④分析法是間接證法;⑤反證法是逆推法.正確的語句有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

復(fù)數(shù)z1=a+2i,z2=-2+i,如果|z1|<|z2|,則實數(shù)a的取值范圍是(  ).
A.-1<a<1B.a(chǎn)>1C.a(chǎn)>0 D.a(chǎn)<-1或a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某個命題的結(jié)論為“三個數(shù)中至少有一個為正數(shù)”,現(xiàn)用反證法證明,假設(shè)正確的是       ( )
A.假設(shè)三個數(shù)都是正數(shù)B.假設(shè)三個數(shù)都為非正數(shù)
C.假設(shè)三個數(shù)至多有一個為負數(shù)D.假設(shè)三個數(shù)中至多有兩個為非正數(shù)

查看答案和解析>>

同步練習(xí)冊答案