12.已知數(shù)列{an}滿足${a_n}+{a_{n-1}}={({-1})^{\frac{{n({n+1})}}{2}}}n,{S_n}$是其前n項(xiàng)和,若S2017=-1007-b,且a1b>0,則$\frac{1}{a_1}+\frac{2}$的最小值為3+2$\sqrt{2}$.

分析 由已知得:a3+a2=3,a5+a4=-5,…a2017+a2016=-2017,把以上各式相加得:S2017-a1=-1008,可得a1+b=1,又a1b>0,a1,b>0.再利用“乘1法”與基本不等式性質(zhì)即可得出.

解答 解:由已知得:a3+a2=3,a5+a4=-5,…a2017+a2016=-2017,
把以上各式相加得:S2017-a1=-1008,
即:a1-1008=-1007-b,
∴a1+b=1,又a1b>0,
∴a1,b>0.
則$\frac{1}{a_1}+\frac{2}$=(a1+b)$(\frac{1}{{a}_{1}}+\frac{2})$=3+$\frac{{a}_{1}}$+$\frac{2{a}_{1}}$≥3+$2\sqrt{\frac{{a}_{1}}•\frac{2{a}_{1}}}$=3+2$\sqrt{2}$,當(dāng)且僅當(dāng)b=$\sqrt{2}$a1=2-$\sqrt{2}$時(shí)取等號.
故答案為:$3+2\sqrt{2}$.

點(diǎn)評 本題考查了“累加求和”、“乘1法”與基本不等式性質(zhì),考查了分類討論方法、推理能力與就計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,已知PA垂直于平行四邊形ABCD所在平面,若PC⊥BD,則平行四邊形ABCD一定是( 。
A.正方形B.菱形C.矩形D.非上述三種圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{1}{x}$+log2$\frac{1+ax}{1-x}$為奇函數(shù),則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.解α的終邊過點(diǎn)P(4,-3),則cosα的值為( 。
A.$\frac{4}{5}$B.$-\frac{3}{5}$C.4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列幾個命題正確的個數(shù)是( 。
①方程x2+(a-3)x+a=0有一個正根,一個負(fù)根,則a<0;
②函數(shù)$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x+1)的定義域是[-1,3],則f(x2)的定義域是[0,2];
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個數(shù)是m,則m的值不可能是1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校開展運(yùn)動會,招募了8名男志愿者和12名女志愿者,將這20名志愿者的身高編成如下莖葉圖(單位:cm)
若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”.
(Ⅰ)求8名男志愿者的平均身高和12名女志愿者身高的中位數(shù);
(Ⅱ)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.${({2x+\frac{1}{x}})^5}$的展開式中,x3的系數(shù)是80(用數(shù)學(xué)填寫答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圖中曲線的方程可以是( 。
A.(x+y-1)•(x2+y2-1)=0B.$\sqrt{x+y-1}•({x^2}+{y^2}-1)=0$
C.$(x+y-1)•\sqrt{{x^2}+{y^2}-1}=0$D.$\sqrt{x+y-1}•\sqrt{{x^2}+{y^2}-1}=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如表:
與教育有關(guān)與教育無關(guān)合計(jì)
301040
35540
合計(jì)651580
(1)能否在犯錯誤的概率不超過5%的前提下,認(rèn)為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”?
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635
(2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為X,求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案