精英家教網 > 高中數學 > 題目詳情
已知f(x)=xlnx
(1)求函數f(x)的單調區(qū)間;
(2)求函數f(x)在[t,t+2](t>0)上的最小值.
分析:(1)求出函數的定義域,求出導數f′(x),在定義域內解不等式f′(x)<0,f′(x)>0即得單調區(qū)間;
(2)由(1)可知x=
1
e
為f(x)的極值點,按照極值點在區(qū)間[t,t+2]的右側、內部、左側三種情況進行討論,由函數的單調性即可求得其最小值;
解答:解:(1)f(x)的定義域為(0,+∞),f′(x)=lnx+1,
令f′(x)<0,解得0<x<
1
e
,令f′(x)>0,解得x>
1
e
,
所以f(x)的單調減區(qū)間為(0,
1
e
),單調增區(qū)間為(
1
e
,+∞);
(2)由(1)知f(x)的單調減區(qū)間為(0,
1
e
),單調增區(qū)間為(
1
e
,+∞),
則(。┊0<t<t+2<
1
e
時,t無解;
(ⅱ)當0<t<
1
e
<t+2,即0<t<
1
e
時,
f(x)在[t,
1
e
]上遞減,在[
1
e
,t+2]上遞增,
所以f(x)min=f(
1
e
)=-
1
e
;
(ⅲ)當
1
e
≤t<t+2,即t
1
e
時,f(x)在[t,t+2]上單調遞增,
所以f(x)min=f(t)=tlnt,
所以f(x)min=
-
1
e
,0<t<
1
e
tlnt,t≥
1
e
點評:本題考查利用導數研究函數的單調性、求函數在閉區(qū)間上的最值,考查分類討論思想,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a∈R,函數f(x)=xln(-x)+(a-1)x.
(Ⅰ)若f(x)在x=-e處取得極值,求函數f(x)的單調區(qū)間;
(Ⅱ)求函數f(x)在區(qū)間[-e2,-e-1]上的最大值g(a).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xln(1+x)-a(x+1),其中a為實常數.
(1)當x∈[1,+∞)時,f′(x)>0恒成立,求a的取值范圍;
(2)求函數g(x)=f′(x)-
ax1+x
的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=xln(x+1),那么x<0時,f(x)=
xln(-x+1)
xln(-x+1)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•湖北模擬)已知函數f(x)=xln(ax)+ex-1在點(1,0)處切線經過橢圓4x2+my2=4m的右焦點,則橢圓兩準線間的距離為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xln(ax)+ex-1在點(1,0)處的切線經過橢圓4x2+my2=4m的右焦點,則橢圓的離心率為( 。

查看答案和解析>>

同步練習冊答案