【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè)函數(shù),其中.證明:的圖象在圖象的下方.

【答案】(1) .

(2) .

(3)證明見(jiàn)解析.

【解析】分析:()求出函數(shù)的導(dǎo)數(shù),計(jì)算的值,點(diǎn)斜式求出切線方程即可.

(Ⅱ)設(shè),并求導(dǎo).將問(wèn)題轉(zhuǎn)化為在區(qū)間上,恒成立,或者恒成立,通過(guò)特殊值,且,確定恒成立,通過(guò)參數(shù)分離,求得實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè),將問(wèn)題轉(zhuǎn)化為證明,利用函數(shù)的導(dǎo)數(shù)確定函數(shù)最小值在區(qū)間,并證明. 的圖象在圖象的下方.

詳解:(Ⅰ)求導(dǎo),得,

又因?yàn)?/span>

所以曲線在點(diǎn)處的切線方程為

(Ⅱ)設(shè)函數(shù)

求導(dǎo),得

因?yàn)楹瘮?shù)在區(qū)間上為單調(diào)函數(shù),

所以在區(qū)間上,恒成立,或者恒成立,

又因?yàn)?/span>,且,

所以在區(qū)間,只能是恒成立,即恒成立.

又因?yàn)楹瘮?shù)在在區(qū)間上單調(diào)遞減,

所以.

(Ⅲ)證明:設(shè).

求導(dǎo),得.

設(shè),則(其中).

所以當(dāng)時(shí),(即)為增函數(shù).

又因?yàn)?/span>

所以,存在唯一的,使得

在區(qū)間上的情況如下:

-

0

+

所以,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

所以 .

又因?yàn)?/span>,,

所以,

所以,即的圖象在圖象的下方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)若,求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)一名數(shù)學(xué)老師對(duì)全班50名學(xué)生某次考試成績(jī)分男女生進(jìn)行統(tǒng)計(jì)(滿分150分),其中120分(含120分)以上為優(yōu)秀,繪制了如圖所示的兩個(gè)頻率分布直方圖:

(1)根據(jù)以上兩個(gè)直方圖完成下面的列聯(lián)表:

性別 成績(jī)

優(yōu)秀

不優(yōu)秀

總計(jì)

男生

女生

總計(jì)

(2)根據(jù)(1)中表格的數(shù)據(jù)計(jì)算,你有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與性別之間有關(guān)系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)籃球隊(duì)在4次不同比賽中的得分情況如下:

甲隊(duì)

88

91

92

96

乙隊(duì)

89

93

9▓

92

乙隊(duì)記錄中有一個(gè)數(shù)字模糊(即表中陰影部分),無(wú)法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并用表示.

(Ⅰ)在4次比賽中,求乙隊(duì)平均得分超過(guò)甲隊(duì)平均得分的概率;

(Ⅱ)當(dāng)時(shí),分別從甲、乙兩隊(duì)的4次比賽中各隨機(jī)選取1次,記這2個(gè)比賽得分之差的絕對(duì)值為,求隨機(jī)變量的分布列;

(Ⅲ)如果乙隊(duì)得分?jǐn)?shù)據(jù)的方差不小于甲隊(duì)得分?jǐn)?shù)據(jù)的方差,寫出的取值集合.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當(dāng)k=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng) 時(shí),求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)行的個(gè)稅法修正案規(guī)定:個(gè)稅免征額由原來(lái)的2000元提高到3500元,并給出了新的個(gè)人所得稅稅率表:

全月應(yīng)納稅所得額

稅率

不超過(guò)1500元的部分

3%

超過(guò)1500元至4500元的部分

10%

超過(guò)4500元至9000元的部分

20%

超過(guò)9000元至35000元的部分

25%

……

例如某人的月工資收入為5000元,那么他應(yīng)納個(gè)人所得稅為:(元).

(Ⅰ)若甲的月工資收入為6000元,求甲應(yīng)納的個(gè)人收的稅;

(Ⅱ)設(shè)乙的月工資收入為元,應(yīng)納個(gè)人所得稅為元,求關(guān)于的函數(shù);

(Ⅲ)若丙某月應(yīng)納的個(gè)人所得稅為1000元,給出丙的月工資收入.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面

(1)求證:

(2)若圓柱的體積,

①求三棱錐A1﹣APB的體積.

②在線段AP上是否存在一點(diǎn)M,使異面直線OM與所成角的余弦值為?若存在,請(qǐng)指出M的位置,并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ).

(1)如果曲線在點(diǎn)處的切線方程為,求, 的值;

(2)若 ,關(guān)于的不等式的整數(shù)解有且只有一個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列說(shuō)法:①用刻畫回歸效果,當(dāng)越大時(shí),模型的擬合效果越差,反之則越好;②歸納推理是由特殊到一般的推理,而演繹推移則是由一般到特殊的推理;③綜合法證明數(shù)學(xué)問(wèn)題是“由因索果”,分析法證明數(shù)學(xué)問(wèn)題是“執(zhí)果索因”;④設(shè)有一個(gè)回歸方程,變量增加1個(gè)單位時(shí),平均增加5個(gè)單位;⑤線性回歸方程必過(guò)點(diǎn).其中錯(cuò)誤的個(gè)數(shù)有( )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案