分析 (1)根據(jù)$f(4)=\frac{7}{2}$,帶入計(jì)算可得m的值.
(2)求解f(x)的解析式,利用定義域證明即可.
(3)利用單調(diào)性求解f(x)在[2,5]上的值域即可.
解答 解:(1)∵函數(shù)f(x)=xm-$\frac{2}{x}$,
由f(4)=$\frac{7}{2}$,
可得:${4}^{m}-\frac{1}{2}=\frac{7}{2}$,
解得:m=1.
∴m的值為1.
(2)由(1)可得f(x)=x-$\frac{2}{x}$,
設(shè)0<x1<x2,則$f({x}_{1})-f({x}_{2})={x}_{1}-{x}_{2}-\frac{2}{{x}_{1}}+\frac{2}{{x}_{2}}$=${(x}_{1}-{x}_{2})-\frac{2({x}_{2}-{x}_{1})}{{x}_{1}{x}_{2}}$<0,
即f(x1)<f(x2),
∴f(x)在(0,+∞)上是單調(diào)增函數(shù).
(3)由2可知f(x)在(0,+∞)上是單調(diào)增函數(shù),即在[2,5]上的也是增函數(shù).
當(dāng)x=2時(shí),f(x)取得最小值為1,
當(dāng)x=5時(shí),f(x)取得最大值為$\frac{23}{5}$,
故得f(x)在[2,5]上的值域?yàn)閇1,$\frac{23}{5}$].
點(diǎn)評(píng) 本題主要考擦了函數(shù)解析式的求法,單調(diào)性的定義證明以及利用單調(diào)性求解值域問題.屬于基礎(chǔ)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{12}$=1 | C. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $2\sqrt{2}$ | C. | $\frac{{2\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{5}+1}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com