路燈距地面8m,一身高1.6m的人站立在距燈底部4m處,則此時(shí)人影的長為( 。
A、
4
5
m
B、
24
5
m
C、1m
D、5m
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:解三角形
分析:根據(jù)題意畫圖,通過
DE
AB
=
CE
BC
求得EC.
解答:解:如圖,AB為路燈,BE為人距離燈底部的距離,ED為人,EC即為人的影子的長度,
AB=8,DE=1.6,BE=4,
∵DE∥AB,
DE
AB
=
CE
BC
,即
1.6
8
=
CE
4+CE
,求得EC=1,
故影子的長度為1米.
故選C.
點(diǎn)評(píng):本題主要考查了解三角形的實(shí)際應(yīng)用.解題的關(guān)鍵是根據(jù)題意建立數(shù)學(xué)模型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
b
的夾角為
π
3
,且|
a
|=2,|
b
|=1,則
a
a
+2
b
的夾角為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,C、B、D三點(diǎn)在地面同一直線上,A點(diǎn)在D點(diǎn)的正上方,AD=h,從A處測(cè)得河流的兩岸B、C的俯角分別是α、β,則河流的寬度BC等于( 。
A、
hsinαsinβ
sin(α-β)
B、
hsin(α-β)
cosαcosβ
C、
hsin(α-β)
sinαsinβ
D、
hsinαsinβ
cos(α-β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若C=2B,則
c
b
為(  )
A、2sinC
B、2cosB
C、2sinB
D、2cosC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是減函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對(duì)稱,若s,t滿足不等式f(2s-t-5)+f(1-s)≤0,已知
m
=(a,lna+b),
n
=(1,a),且
m
n
共線,則(a-s)2+(b-t)2的最小值為( 。
A、8B、16C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)右焦點(diǎn)F斜率為1的直線交橢圓于A,B兩點(diǎn),向量
OA
+
OB
與向量
α
=(-3,1)共線,則該橢圓的離心率為( 。
A、
3
3
B、
6
3
C、
3
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2為左右焦點(diǎn),點(diǎn)P(2,
3
)在橢圓C上,△F1PF2的重心為G,內(nèi)心為I,且有
IG
F1F2
(λ為實(shí)數(shù)),則橢圓方程為( 。
A、
x2
8
+
y2
6
=1
B、
x2
16
+
y2
4
=1
C、
x2
9
+
5y2
27
=1
D、
x2
10
+
y2
5
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高三第一次診斷性考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)等差數(shù)列的前項(xiàng)和為,若,則必有

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省高三上學(xué)期11月檢測(cè)考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

上周期為5的奇函數(shù),且滿足,則的值為

A. B.1 C. D.2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案