【題目】某城市要建造一個(gè)邊長(zhǎng)為的正方形市民休閑公園,將其中的區(qū)域開挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過(guò)對(duì)邊上一點(diǎn)的區(qū)域內(nèi)作一次函數(shù)的圖像,與線段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線段與曲線有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).

1)寫出函數(shù)關(guān)系式

2)設(shè)點(diǎn)的橫坐標(biāo)為,將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.

【答案】1;(2,.

【解析】

1)根據(jù)函數(shù)yax2過(guò)點(diǎn)D,求出解析式y2x2;由 消去y,利用△=0,求出m即可;

2)①寫出點(diǎn)P的坐標(biāo)(t,2t2),代入直線MN的方程,用t表示出直線方程,利用直線方程求出M、N的坐標(biāo);

②將四邊形MABN的面積S表示成關(guān)于t的函數(shù)St),利用基本不等式即可求出S的最大值.

1)函數(shù)yax2過(guò)點(diǎn)D1,2),

代入計(jì)算得a2,

y2x2;

,消去y2x2kxm0,

由線段MN與曲線OD有且只有一個(gè)公共點(diǎn)P

得△=(﹣k2+4×2×m0,

解得m;

2)設(shè)點(diǎn)P的橫坐標(biāo)為t,則0t1,

∴點(diǎn)Pt2t2);

①直線MN的方程為ykx+b,

ykx過(guò)點(diǎn)P,

kt2t2,

解得k4t;

y4tx2t2

y0,解得x,

M0);

y2,解得x,

N,2);

②將四邊形MABN的面積S表示成關(guān)于t的函數(shù)為

SSt)=2×22×[]4﹣(t),其中0t1;

t2,當(dāng)且僅當(dāng)t,即t時(shí)成立,

所以S≤4;即S的最大值是4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,、、、分別是、、的中點(diǎn),則下列說(shuō)法:

平面;②;③;④平面,

其中正確的命題序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的

C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)后比前多

D. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)后比后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù).

1)若,求函數(shù)在區(qū)間上的最大值;

2)若,寫出函數(shù)的單調(diào)區(qū)間(寫出必要的過(guò)程,不必證明);

3)若存在,使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),曲線在點(diǎn)處的切線在軸上的截距為

1)求;

2)討論的單調(diào)性;

3)設(shè),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),,若對(duì)任意,且,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若對(duì)于任意的,都有成立,求正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有大小相同的2個(gè)白球、3個(gè)紅球;現(xiàn)從中先后有放回地任取球兩次,每次取一個(gè)球,看完后放回盒中.

1)求兩次取得的球顏色相同的概率;

2)若在2個(gè)白球上都標(biāo)上數(shù)字1,3個(gè)紅球上都標(biāo)上數(shù)字2,記兩次取得的球上數(shù)字之和為,求的概率分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇函數(shù),,其中.

(1)若函數(shù)的圖像過(guò)點(diǎn),求實(shí)數(shù)的值;

(2),試判斷函數(shù)上的單調(diào)性并證明;

(3)設(shè)函數(shù)若對(duì)每一個(gè)不小于的實(shí)數(shù),都恰有一個(gè)小于的實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案