已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為,且||=2,點(diǎn)(1,)在該橢圓上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)的直線與橢圓C相交于A,B兩點(diǎn),若AB的面積為,求以為圓心且與直線相切的圓方程.

 

【答案】

(1)

(2)

【解析】

試題分析:解:(Ⅰ)根據(jù)題意,由于橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為,且||=2,點(diǎn)(1,)在該橢圓上,2c=2,利用定義可知橢圓C的方程為

(Ⅱ)①當(dāng)直線⊥x軸時(shí),可得A(-1,-),B(-1,),AB的面積為3,不符合題意.

②當(dāng)直線與x軸不垂直時(shí),設(shè)直線的方程為y=k(x+1).代入橢圓方程得:

,顯然>0成立,設(shè)A,B,則

,可得|AB|=

又圓的半徑r=,∴AB的面積=|AB| r==,化簡(jiǎn)得:17+-18=0,得k=±1,∴r =,圓的方程為

考點(diǎn):直線與橢圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了直線與橢圓的位置關(guān)系,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
1
2
,且點(diǎn)(1,
3
2
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)橢圓C的左焦點(diǎn)F1的直線l與橢圓C相交于A,B兩點(diǎn),若△AOB的面積為
6
2
7
,求圓心在原點(diǎn)O且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的對(duì)稱中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2
5
,點(diǎn)(
5
,
4
3
)
在該橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的一點(diǎn)p在第一象限,且滿足PF1⊥PF2,⊙O的方程為x2+y2=4.求點(diǎn)p坐標(biāo),并判斷直線pF2與⊙O的位置關(guān)系;
(3)設(shè)點(diǎn)A為橢圓的左頂點(diǎn),是否存在不同于點(diǎn)A的定點(diǎn)B,對(duì)于⊙O上任意一點(diǎn)M,都有
MB
MA
為常數(shù),若存在,求所有滿足條件的點(diǎn)B的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)已知橢圓C的對(duì)稱中心為坐標(biāo)原點(diǎn),上焦點(diǎn)為F(0,1),離心率e=
12

(Ⅰ)求橢圓C的方程;    
(Ⅱ)設(shè)A(m,0)(m>0)為x軸上的動(dòng)點(diǎn),過(guò)點(diǎn)A作直線l與直線AF垂直,試探究直線l與橢圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省高三下學(xué)期二調(diào)考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為,且||=2,

點(diǎn)(1,)在該橢圓上.

1)求橢圓C的方程;

2)過(guò)的直線與橢圓C相交于AB兩點(diǎn),若AB的面積為,求以 為圓心且與直線相切圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市海淀區(qū)高三下學(xué)期一模數(shù)學(xué)(文)測(cè)試 題型:解答題

(本小題滿分13分)

已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在軸上,離心率為,且點(diǎn)在該橢圓上。

(I)求橢圓C的方程;

(II)過(guò)橢圓C的左焦點(diǎn)的直線與橢圓C相交于A,B兩點(diǎn),若的面積為,求圓心在原點(diǎn)O且與直線相切的圓的方程。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案