【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤(rùn)萬元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤(rùn)萬元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高

1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤(rùn)不低于原來名工人創(chuàng)造的年總利潤(rùn),則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?

2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤(rùn)始終不低于調(diào)出的工人所創(chuàng)造的年總利潤(rùn),求實(shí)數(shù)的取值范圍.

【答案】1;(2.

【解析】

1)根據(jù)題意,列出不等式,求解即可;

2)求出的范圍,得出不等式,整理可得恒成立,根據(jù)的范圍,可知函數(shù)在定義域內(nèi)為減函數(shù),當(dāng)時(shí),函數(shù)取得最小值.

設(shè)調(diào)出人參加項(xiàng)目從事售后服務(wù)工作

1)由題意得:,

,又,所以.即最多調(diào)整500名員工從事第三產(chǎn)業(yè).

2)由題知,,

從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤(rùn)為萬元,

從事原來產(chǎn)業(yè)的員工的年總利潤(rùn)為萬元,

所以,

所以,

恒成立,

因?yàn)?/span>

所以,

所以,

,所以,

的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,又有四個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),.

)若是函數(shù)的一個(gè)極值點(diǎn),求的值;

)求證:當(dāng)時(shí),上是增函數(shù);

)若對(duì)任意的12),總存在,使不等式成立,求實(shí)數(shù)的取范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若直線是曲線的一條切線,求實(shí)數(shù)的值;

(2)當(dāng)時(shí),若函數(shù)上有兩個(gè)零點(diǎn).求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為,其右焦點(diǎn)與拋物線的焦點(diǎn)重合,過且垂直于拋物線對(duì)稱軸的直線與橢圓交于、兩點(diǎn),與拋物線交于、兩點(diǎn).

(1)求橢圓的方程;

(2)若直線l與(1)中橢圓相交于,兩點(diǎn), 直線, ,的斜率分別為,, (其中),且,,成等比數(shù)列;設(shè)的面積為, 以為直徑的圓的面積分別為, , 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級(jí)共336名學(xué)生同時(shí)參與了我運(yùn)動(dòng),我健康,我快樂的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級(jí)的學(xué)生中分別抽取7名和5名學(xué)生進(jìn)行測(cè)試.下表是高二年級(jí)的5名學(xué)生的測(cè)試數(shù)據(jù)(單位:個(gè)/分鐘):

1)求高一、高二兩個(gè)年級(jí)各有多少人?

2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱該學(xué)生為運(yùn)動(dòng)達(dá)人”.

①從高二年級(jí)的學(xué)生中任選一人,試估計(jì)該學(xué)生為運(yùn)動(dòng)達(dá)人的概率;

②從高二年級(jí)抽出的上述5名學(xué)生中,隨機(jī)抽取3人,求抽取的3名學(xué)生中為運(yùn)動(dòng)達(dá)人的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,圓,點(diǎn),是圓上的動(dòng)點(diǎn),線段的垂直平分線交直線于點(diǎn),點(diǎn)的軌跡為曲線.

1)討論曲線的形狀,并求其方程;

2)若,且面積的最大值為,直線過點(diǎn)且不垂直于坐標(biāo)軸,與曲線交于,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是1990年-2017年我國(guó)勞動(dòng)年齡(15-64歲)人口數(shù)量及其占總?cè)丝诒戎厍闆r:

根據(jù)圖表信息,下列統(tǒng)計(jì)結(jié)論不正確的是( 。

A. 2000年我國(guó)勞動(dòng)年齡人口數(shù)量及其占總?cè)丝诒戎氐哪暝龇鶠樽畲?/span>

B. 2010年后我國(guó)人口數(shù)量開始呈現(xiàn)負(fù)增長(zhǎng)態(tài)勢(shì)

C. 2013年我國(guó)勞動(dòng)年齡人口數(shù)量達(dá)到峰值

D. 我國(guó)勞動(dòng)年齡人口占總?cè)丝诒戎貥O差超過

查看答案和解析>>

同步練習(xí)冊(cè)答案