精英家教網 > 高中數學 > 題目詳情

【題目】經過多年的運作,雙十一搶購活動已經演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2018雙十一網購狂歡節(jié),某廠家擬投入適當的廣告費,對網上所售產品進行促銷.經調查測算,該促銷產品在雙十一的銷售量p萬件與促銷費用x萬元滿足(其中,a為正常數).已知生產該產品還需投入成本萬元(不含促銷費用),每一件產品的銷售價格定為元,假定廠家的生產能力完全能滿足市場的銷售需求.

1)將該產品的利潤y萬元表示為促銷費用x萬元的函數;

2)促銷費用投入多少萬元時,廠家的利潤最大?并求出最大利潤的值.

【答案】1);(2)當時,促銷費用投入1萬元,廠家的利潤最大,為萬元;當時,促銷費用投入萬元,廠家的利潤最大,為萬元.

【解析】

1)根據產品的利潤銷售額產品的成本建立函數關系;

2)利用導數可求出該函數的最值.

1)由題意知,,

代入化簡得:);

2

(。┊時,

①當時,,所以函數上單調遞增,

②當時,,所以函數上單調遞減,

從而促銷費用投入萬元時,廠家的利潤最大;

(ⅱ)當時,因為函數上單調遞增,

所以在上單調遞增,故當時,函數有最大值,

即促銷費用投入萬元時,廠家的利潤最大.

綜上,當時,促銷費用投入1萬元,廠家的利潤最大,為萬元;

時,促銷費用投入萬元,廠家的利潤最大,為萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數滿足:對于任意正數、,都有,,且,則稱函數為“函數”.

1)試判斷函數是否是“函數”;

2)若函數為“函數”,求實數的取值范圍;

3)若函數為“函數”,且,求證:對任意,都有.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四邊形為梯形,,,四邊形為矩形,且平面平面,又,.

1)求證:

2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

1)若,判斷的奇偶性,并說明理由;

2)若,求上的最小值;

3)若,且有三個不同實根,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于函數,給出以下四個命題,其中真命題的序號是_______.

時,單調遞減且沒有最值;

②方程一定有解;

③如果方程有解,則解的個數一定是偶數;

是偶函數且有最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形中,,點中點,且,現(xiàn)將三角形沿折起,使點到達點的位置,且與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,為自然對數的底數.

1)當時,證明:,;

2)若函數上存在兩個極值點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面是等腰三角形,的一個三等分點(靠近點),的延長線交于點,連接

1)求異面直線所成角的余弦值;

2)求二面角的正切值.

查看答案和解析>>

同步練習冊答案