A. | 關(guān)于極軸所在直線對稱 | B. | 重合 | ||
C. | 關(guān)于直線$θ=\frac{π}{2}(ρ∈R)$對稱 | D. | 關(guān)于極點(diǎn)對稱 |
分析 設(shè)極點(diǎn)為O,可得|OM|=|ON|=3,$\frac{π}{2}-\frac{π}{3}$=$\frac{2π}{3}-\frac{π}{2}$,即可得出.
解答 解:設(shè)極點(diǎn)為O,
∵|OM|=|ON|=3,$\frac{π}{2}-\frac{π}{3}$=$\frac{2π}{3}-\frac{π}{2}$=$\frac{π}{6}$,
∴點(diǎn)M(3,$\frac{π}{3}$)和點(diǎn)N(3,$\frac{2}{3}$π)的位置關(guān)系是關(guān)于直線$θ=\frac{π}{2}(ρ∈R)$對稱,
故選:C.
點(diǎn)評 本題考查了極坐標(biāo)的應(yīng)用、對稱性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | DC1⊥D1P | |
B. | 若直線l是平面ABCD內(nèi)的直線,直線m是平面DD1C1C內(nèi)的直線,若l與m相交,則交點(diǎn)一定在直線CD上 | |
C. | 若P為A1B上動點(diǎn),則AP+PD1的最小值為$\frac{\sqrt{2}+\sqrt{6}}{2}$ | |
D. | ∠PAD1最小為$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{55}$ | B. | $\sqrt{65}$ | C. | $\sqrt{85}$ | D. | $\sqrt{95}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∉(0,+∞),lnx≤x-1 | B. | ¬p:?x∈(0,+∞),lnx≤x-1 | ||
C. | ¬p:?x∉(0,+∞),lnx≥x-1 | D. | ¬p:?x∈(0,+∞),lnx≤x-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com