6.在極坐標(biāo)系中,點M(3,$\frac{π}{3}$)和點N(3,$\frac{2}{3}$π)的位置關(guān)系是( 。
A.關(guān)于極軸所在直線對稱B.重合
C.關(guān)于直線$θ=\frac{π}{2}(ρ∈R)$對稱D.關(guān)于極點對稱

分析 設(shè)極點為O,可得|OM|=|ON|=3,$\frac{π}{2}-\frac{π}{3}$=$\frac{2π}{3}-\frac{π}{2}$,即可得出.

解答 解:設(shè)極點為O,
∵|OM|=|ON|=3,$\frac{π}{2}-\frac{π}{3}$=$\frac{2π}{3}-\frac{π}{2}$=$\frac{π}{6}$,
∴點M(3,$\frac{π}{3}$)和點N(3,$\frac{2}{3}$π)的位置關(guān)系是關(guān)于直線$θ=\frac{π}{2}(ρ∈R)$對稱,
故選:C.

點評 本題考查了極坐標(biāo)的應(yīng)用、對稱性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,棱長為1的正方體ABCD-A1B1C1D1中,P為線段A1B上的動點,則下列結(jié)論錯誤的是( 。
A.DC1⊥D1P
B.若直線l是平面ABCD內(nèi)的直線,直線m是平面DD1C1C內(nèi)的直線,若l與m相交,則交點一定在直線CD上
C.若P為A1B上動點,則AP+PD1的最小值為$\frac{\sqrt{2}+\sqrt{6}}{2}$
D.∠PAD1最小為$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)y=(x-2)(x-3)(x-4)在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=1-2acosx-2sin2x的最小值為g(a)(a∈R).
(1)當(dāng)a=2時,求函數(shù)f(x)的值域;
(2)當(dāng)a=2時,x∈[0,$\frac{π}{2}$],函數(shù)f(x)≤m恒成立,求m的取值范圍;
(3)求g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若平面α的一個法向量為$\overrightarrow{n}$=(4,1,1),直線l的一個方向向量為$\overrightarrow{a}$=(-2,-3,3),則l與α所成角的正弦值為$\frac{4\sqrt{11}}{33}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點F(1,0),點A是直線l1:x=-1上的動點,過A作直線l2,l1⊥l2,線段AF的垂直平分線與l2交于點P.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求$\frac{|k|}{|MN|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,平行六面體ABCD-A′B′C′D′,其中AB=4,AD=3,AA′=3,∠BAD=90°,∠BAA′=60°,∠DAA′=60°,則AC′的長為(  )
A.$\sqrt{55}$B.$\sqrt{65}$C.$\sqrt{85}$D.$\sqrt{95}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=$\frac{1}{3}$(a-1)x3+$\frac{1}{2}$ax2-$\frac{1}{4}$x+$\frac{1}{5}$在其定義域內(nèi)有極值點,則a的取值為(-∞,$\frac{-1-\sqrt{5}}{2}$)∪( $\frac{-1+\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:?x∈(0,+∞),lnx>x-1,則命題p的否定是(  )
A.¬p:?x∉(0,+∞),lnx≤x-1B.¬p:?x∈(0,+∞),lnx≤x-1
C.¬p:?x∉(0,+∞),lnx≥x-1D.¬p:?x∈(0,+∞),lnx≤x-1

查看答案和解析>>

同步練習(xí)冊答案