A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{4\sqrt{2}-\sqrt{6}}{2}$ | D. | 2$\sqrt{2}$-1 |
分析 寫出橢圓的參數(shù)方程$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(0≤α<2π),設(shè)出點(diǎn)P的坐標(biāo),運(yùn)用點(diǎn)到直線的距離公式,以及兩角和的正弦公式,結(jié)合正弦函數(shù)的最值,即可得到答案.
解答 解:由于橢圓$\frac{{x}^{2}}{3}$+y2=1的參數(shù)方程為:參數(shù)方程$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(0≤α<2π),設(shè)點(diǎn)P($\sqrt{3}$cosα,sinα),
則P到直線l:x+y-4=0的距離為d=$\frac{|\sqrt{3}cosα+sinα-4|}{\sqrt{2}}$=$\frac{|2sin(α+\frac{π}{3})-4|}{\sqrt{2}}$.
則當(dāng)sin(α+$\frac{π}{3}$)=-1時,d取得最大值:3$\sqrt{2}$.
故選:B.
點(diǎn)評 本題考查直線與橢圓的位置關(guān)系,解題時要認(rèn)真審題,注意橢圓的參數(shù)方程、點(diǎn)到直線的距離公式、三角函數(shù)的性質(zhì)的靈活運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $-\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤-1} | B. | {x|x≥3} | C. | {x|x≤-1或x≥3} | D. | {x|x≤0或x≥3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com