A. | {x|x≤-1} | B. | {x|x≥3} | C. | {x|x≤-1或x≥3} | D. | {x|x≤0或x≥3} |
分析 由分段函數(shù),討論x>0,x≤0,得到對應(yīng)不等式,由指數(shù)不等式和對數(shù)不等式的解法,即可得到所求解集.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{(\frac{1}{3})^{x}-2,x≤0}\end{array}\right.$,
由$\left\{\begin{array}{l}{x>0}\\{f(x)=lo{g}_{3}x≥1}\end{array}\right.$即為$\left\{\begin{array}{l}{x>0}\\{x≥3}\end{array}\right.$,
解得x≥3;
由$\left\{\begin{array}{l}{x≤0}\\{(\frac{1}{3})^{x}-2≥1}\end{array}\right.$即為$\left\{\begin{array}{l}{x≤0}\\{{3}^{-x}≥3}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x≤0}\\{-x≥1即x≤-1}\end{array}\right.$,
解得x≤-1.
綜上可得,x≤-1或x≥3.
則不等式f(x)≥1的解集為{x|x≤-1或x≥3}.
故選:C.
點(diǎn)評 本題考查分段函數(shù)的應(yīng)用:解不等式,注意運(yùn)用分類討論思想方法,考查指數(shù)不等式和對數(shù)不等式的解法,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,3] | B. | (-∞,3] | C. | (-6,-3] | D. | (-6,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{4\sqrt{2}-\sqrt{6}}{2}$ | D. | 2$\sqrt{2}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,1) | B. | (2,-1) | C. | (-1,2) | D. | (-1,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com