4.在平面直角坐標系中,已知向量$\overrightarrow{m}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(cosx,sinx),$x∈(0,\frac{π}{2})$.
(1)若$\overrightarrow{m}⊥\overrightarrow{n}$,求tanx的值;   
(2)若$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,求x的值.

分析 (1)由已知向量的坐標結(jié)合向量垂直列式求得tanx的值;
(2)直接利用數(shù)量積求夾角公式可得$\sqrt{2}cosx-\sqrt{2}sinx=1$,再由輔助角公式化積可得cos(x+$\frac{π}{4}$)=$\frac{1}{2}$.求得x+$\frac{π}{4}$的值,則x的值可求.

解答 解:(1)∵$\overrightarrow{m}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(cosx,sinx),
∴由$\overrightarrow{m}⊥\overrightarrow{n}$,得$\overrightarrow{m}•\overrightarrow{n}=\frac{\sqrt{2}}{2}cosx-\frac{\sqrt{2}}{2}sinx=0$,
得sinx=cosx,∵$x∈(0,\frac{π}{2})$,
∴cosx≠0,則tanx=1;
(2)∵$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,
∴cos$\frac{π}{3}$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{\frac{\sqrt{2}}{2}cosx-\frac{\sqrt{2}}{2}sinx}{1×1}=\frac{1}{2}$,
則$\sqrt{2}cosx-\sqrt{2}sinx=1$,
∴cos(x+$\frac{π}{4}$)=$\frac{1}{2}$.
∴x+$\frac{π}{4}=\frac{π}{3}$,則x=$\frac{π}{12}$.

點評 本題考查平面向量的數(shù)量積運算,考查了由數(shù)量積求夾角公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.以直角坐標系xOy中,直線l:y=x,圓C:$\left\{\begin{array}{l}{x=-1+cosφ}\\{y=-2+sinφ}\end{array}\right.$(φ為參數(shù)),以坐標原點為為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求直線l與圓C的極坐標方程;
(Ⅱ)設(shè)直線l與圓C的交點為M,N,求△CMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列${a_n}=ncos\frac{nπ}{2}$,則此數(shù)列前2016項之和為1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.化簡$\sqrt{1-2sin1cos1}$的結(jié)果為(  )
A.sin1-cos1B.cos1-sin1C.sin1+cos1D.-sin1-cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|x>5},集合B={x|x>a},若命題“x∈A”是命題“x∈B”的充分不必要條件,則實數(shù)a的取值范圍是(  )
A.(-∞,5)B.(-∞,5]C.(5,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.數(shù)列{an}滿足log2an+1-log2an=1,且a1=1,則通項公式an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求以原點為頂點,坐標軸為對稱軸,并且經(jīng)過點(6,4)的拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.函數(shù)f(x)=loga(3-ax)(a>0,a≠1)
(1)當a=3時,求函數(shù)f(x)的定義域,并證明g(x)=f(x)-loga(3+ax)的奇偶性;
(2)是否存在實數(shù)a,使函數(shù)f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=f(x)滿足對任意的x,y∈R,都有f(x+y)=f(x)•f(y),且f(1)=2,若g(x)是f(x)的反函數(shù)(注:互為反函數(shù)的函數(shù)圖象關(guān)于直線y=x對稱),則g(8)=(  )
A.3B.4C.16D.$\frac{1}{256}$

查看答案和解析>>

同步練習(xí)冊答案