12.化簡$\sqrt{1-2sin1cos1}$的結(jié)果為( 。
A.sin1-cos1B.cos1-sin1C.sin1+cos1D.-sin1-cos1

分析 根據(jù)同角三角函數(shù)關(guān)系式化簡即可.

解答 解:∵sin21+cos21=1,
那么:$\sqrt{1-2sin1cos1}=\sqrt{sin^21+cos^21-2sin1cos1}$=|sin1-cos1|.
∵$\frac{π}{4}<1<\frac{π}{2}$,
∴sin1>cos1.
∴|sin1-cos1|=sin1-cos1.
故選A.

點評 本題主要考察了同角三角函數(shù)關(guān)系式的應(yīng)用,屬于基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.將A,B,C,D這4名同學從左至右隨機地排成一排,則“A與B相鄰且A與C之間恰好有1名同學”的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,內(nèi)角A、B、C的對邊分別是a,b,c,且A、B、C成等差數(shù)列
(1)若$b=\sqrt{7},c=2$,求△ABC的面積
(2)若sinA、sinB、sinC成等比數(shù)列,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ax3+bx(x∈R)
(1)若函數(shù)f(x)的圖象在x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,求f(x)的解析式和單調(diào)區(qū)間;
(2)若a=1,且函數(shù)f(x)在區(qū)間[-1,1]上是減函數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<0}\\{|\frac{1}{2}{x}^{2}-2x+1|,x≥0}\end{array}\right.$,方程f2(x)-af(x)+b=0(b≠0)有六個不同的實數(shù)解,則3a+b的取值范圍是(  )
A.[6,11]B.[3,11]C.(6,11)D.(3,11)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.當0≤x≤$\frac{π}{2}$時,函數(shù)f(x)=sinx+$\sqrt{3}$cosx的(  )
A.最大值是$\sqrt{3}$,最小值是$\frac{1}{2}$B.最大值是$\sqrt{3}$,最小值是1
C.最大值是2,最小值是1D.最大值是2,最小值是$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在平面直角坐標系中,已知向量$\overrightarrow{m}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{n}$=(cosx,sinx),$x∈(0,\frac{π}{2})$.
(1)若$\overrightarrow{m}⊥\overrightarrow{n}$,求tanx的值;   
(2)若$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.對于R上可導函數(shù)f(x),若滿足(x-2)f′(x)>0,則必有( 。
A.f(1)+f(3)<2f(2)B.f(1)+f(3)>2f(2)C.f(1)+f(3)>f(0)+f(4)D.f(1)+f(0)<f(3)+f(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,曲線Γ由曲線C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0,y≤0)和曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0,y>0)組成,其中點F1,
F2為曲線C1所在圓錐曲線的焦點,點F3,F(xiàn)4為曲線C2所在圓錐曲線的焦點,
(Ⅰ)若F2(2,0),F(xiàn)3(-6,0),求曲線Γ的方程;
(Ⅱ)如圖,作直線l平行于曲線C2的漸近線,交曲線C1于點A、B,求證:弦AB的中點M必在曲線C2的另一條漸近線上;
(Ⅲ)對于(Ⅰ)中的曲線Γ,若直線l1過點F4交曲線C1于點C、D,求△CDF1面積的最大值.

查看答案和解析>>

同步練習冊答案