已知函數(shù)f(x)=|x-1|,g(x)=-x2+6x-5.
(Ⅰ)用分段函數(shù)的形式表示g(x)-f(x),并求g(x)-f(x)的最大值;
(Ⅱ)若g(x)≥f(x),求實(shí)數(shù)x的取值范圍.
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:(Ⅰ)分x≥1,x<1可去掉絕對(duì)值,得到g(x)-f(x)的表達(dá)式,再考慮各段的最值,即可得到函數(shù)的最大值;
(Ⅱ)討論x≥1時(shí),x<1時(shí)的g(x)≥f(x)的解集,注意運(yùn)用二次不等式的解法,最后再求并集.
解答: 解:(Ⅰ)g(x)-f(x)=(-x2+6x-5)-|x-1|=
-x2+5x-4x≥1
-x2+7x-6x<1
,
則由于x<1時(shí),g(x)-f(x)<0,x≥1時(shí),g(x)-f(x)可取正數(shù).
則有g(shù)(x)-f(x)的最大值在[1,4]上取得,
∴g(x)-f(x)=(-x2+6x+5)-(x-1)=-(x-
5
2
2+
9
4
9
4

∴當(dāng)x=
5
2
時(shí),g(x)-f(x)取到最大值是
9
4
.             
(Ⅱ)當(dāng)x≥1時(shí),f(x)=x-1;
∵g(x)≥f(x),
∴-x2+6x-5≥x-1;                                        
整理,得(x-1)(x-4)≤0,
解得x∈[1,4];                                         
當(dāng)x<1時(shí),f(x)=1-x;
∵g(x)≥f(x),
∴-x2+6x-5≥1-x,
整理,得(x-1)(x-6)≤0,
解得x∈[1,6],
x<1
1≤x≤6
,所以不等式組無(wú)解                           
綜上,x的取值范圍是[1,4].
點(diǎn)評(píng):本題考查分段函數(shù)及運(yùn)用,考查分段函數(shù)的最值和解不等式,注意各段的自變量的范圍,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是等差數(shù)列,其中a1=25,a4=16.
(1)求{an}的通項(xiàng);  
(2)數(shù)列{an}從哪一項(xiàng)開(kāi)始小于0;
(3)求|a1|+|a2|+|a3|+…+|a20|值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是正方體的表面展開(kāi)圖,則下列描述正確的是(  )
A、BM與ED平行
B、CN與BM相交
C、CN與BE異面
D、DM與AF平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*).
(Ⅰ)設(shè)bn=
1
(an+1)(an+3)
,求數(shù)列{bn}的前n項(xiàng)和Tn
(Ⅱ)對(duì)于給定的數(shù)列{cn},如果存在實(shí)數(shù)p,q使得cn+1=pcn+q對(duì)于任意n∈N*恒成立,我們稱數(shù)列{cn}是“M類數(shù)列”.
(ⅰ)判斷數(shù)列{an}是否為“M類數(shù)列”?若是,求出實(shí)數(shù)p,q的值;若不是,請(qǐng)說(shuō)明理由;
(ⅱ)數(shù)列{dn}是“M類數(shù)列”,且滿足d1=2,dn+d n+1=3•2n(n∈N*)求數(shù)列{dn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{2nan}的前n項(xiàng)和Sn=9-6n
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{Tn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2+2x-3(x>0)的單調(diào)增區(qū)間是( 。
A、(0,+∞)
B、(1,+∞)
C、(-∞,-1)
D、(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué)測(cè)量,他們身高(單位:cm)獲得身高數(shù)據(jù)如下:
甲:158、162、163、168、168、170、171、179、179、182
乙:159、162、165、168、170、173、176、178、179、181
(1)判斷哪個(gè)班的平均身高較高;
(2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取2名身高不低于173cm的同學(xué),求身高為176cm同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=2
3
,b=6,且A=30°,求角B,C及邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x
x+a
,滿足f(2)=1.
(1)求函數(shù)f(x)的解析式;
(2)證明f(x)在(-2,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案