【題目】已知分別是焦距為的橢圓的左、右頂點(diǎn), 為橢圓上非頂點(diǎn)的點(diǎn),直線的斜率分別為,且.

(1)求橢圓的方程;

(2)直線(與軸不重合)過(guò)點(diǎn)且與橢圓交于兩點(diǎn),直線交于點(diǎn),試求點(diǎn)的軌跡是否是垂直軸的直線,若是,則求出點(diǎn)的軌跡方程,若不是,請(qǐng)說(shuō)明理由.

【答案】(1);(2

【解析】試題分析:

(1)由題意可求得,則橢圓的方程為.

(2)由題意分類討論直線斜率存在和斜率不存在兩種情況可得點(diǎn)的軌跡方程為.

試題解析:

(1)設(shè)為橢圓上非頂點(diǎn)的點(diǎn), ,又

,即,

,故橢圓的方程為.

2)當(dāng)過(guò)點(diǎn)直線斜率不存在時(shí),不妨設(shè),直線的方程是,直線的方程是,交點(diǎn)為.,由對(duì)稱性可知交點(diǎn)為.

點(diǎn)在直線上,

當(dāng)直線斜率存在時(shí),設(shè)的方程為,

,

,則.

的方程是的方程是,

,

.

綜上所述,點(diǎn)的軌跡方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是等差數(shù)列,數(shù)列{an}的前n項(xiàng)和為Sn , {bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b2=7,S2+b2=6 (Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= ,AB=1,M是PB的中點(diǎn).

(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求面AMC與面BMC所成二面角的大小余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn)A2,5),B-21),M(在第一象限)和N是過(guò)原點(diǎn)的直線l上的兩個(gè)動(dòng)點(diǎn),且|MN|=,lAB,如果直線AMBN的交點(diǎn)Cy軸上,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貨輪勻速行駛在相距300海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其它費(fèi)用組成,已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為0.5),其它費(fèi)用為每小時(shí)800元,且該貨輪的最大航行速度為50海里/小時(shí).
(1)請(qǐng)將從甲地到乙地的運(yùn)輸成本y(元)表示為航行速度x(海里/小時(shí))的函數(shù);
(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為18,焦距為6,則橢圓的方程為( )
A.
B.
C.
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x3 (m+3)x2+(m+6)x,x∈R.(其中m為常數(shù))
(1)當(dāng)m=4時(shí),求函數(shù)的極值點(diǎn)和極值;
(2)若函數(shù)y=f(x)在區(qū)間(0,+∞)上有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩直線l1:x+8y+7=0和l2:2x+y﹣1=0.
(1)求l1與l2交點(diǎn)坐標(biāo);
(2)求過(guò)l1與l2交點(diǎn)且與直線x+y+1=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出如下幾個(gè)結(jié)論:①命題“x∈R,sinx+cosx=2”的否定是“x∈R,sinx+cosx≠2”;②命題“x∈R,sinx+ ≥2”的否定是“x∈R,sinx+ <2”;③對(duì)于x∈(0, ),tanx+ ≥2;
x∈R,使sinx+cosx= .其中正確的為(
A.③
B.③④
C.②③④
D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案