【題目】對于數(shù)列,若對任意的,也是數(shù)列中的項,則稱數(shù)列為“數(shù)列”,已知數(shù)列滿足:對任意的,均有,其中表示數(shù)列的前項和.
(1)求證:數(shù)列為等差數(shù)列;
(2)若數(shù)列為“數(shù)列”,,且,求的所有可能值;
(3)若對任意的,也是數(shù)列中的項,求證:數(shù)列為“數(shù)列”.
【答案】(1)證明見解析;(2)、10、12、16;(3)證明見解析.
【解析】
(1)已知與關(guān)系,結(jié)合等差數(shù)列的定義,即可證明;
(2)根據(jù)“數(shù)列”的定義,可推出公差的所有可能值,即可求出的所有可能值;
(3)由已知任意的,也是數(shù)列中的項,得到與公差的關(guān)系,從而求得的通項,即可得到證明.
(1)由,得,
,
即,,
兩式相減得,
數(shù)列為等差數(shù)列;
(2)設(shè)的公差為,
,
由于數(shù)列為“數(shù)列”,是的項
,
,
的可能值為,
的所有可能值;
(3)設(shè),
,也是數(shù)列中的項,
設(shè)是中的第項,則
,
是中的第項,
數(shù)列為“數(shù)列”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點為,離心率,左,右頂點分別為A,B,經(jīng)過點F的直線與橢圓交于C,D兩點(與A,B不重合).
(1)求橢圓M的方程;
(2)記與的面積分別為和,求|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點為A,下頂點為B,過A、O、B(O為坐標(biāo)原點)三點的圓的圓心坐標(biāo)為.
(1)求橢圓的方程;
(2)已知點M在x軸正半軸上,過點B作BM的垂線與橢圓交于另一點N,若∠BMN=60°,求點M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓:,圓:.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓,的極坐標(biāo)方程;
(2)設(shè),分別為,上的點,若為等邊三角形,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)和,設(shè),若對所有的都有,則稱和互為“零點相鄰函數(shù)”.若函數(shù)與互為“零點相鄰函數(shù)”,則實數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,、與平面所成的角依次是和,,,依次是,上的點,其中,.
(1)求直線與平面所成的角(結(jié)果用反三角函數(shù)值表示);
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某自來水公司要在公路兩側(cè)鋪設(shè)水管,公路為東西方向,在路北側(cè)沿直線鋪設(shè)線路l1,在路南側(cè)沿直線鋪設(shè)線路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線將l1與l2接通.已知AB = 60m,BC = 80m,公路兩側(cè)鋪設(shè)水管的費用為每米1萬元,穿過公路的EF部分鋪設(shè)水管的費用為每米2萬元,設(shè)∠EFB= α,矩形區(qū)域內(nèi)的鋪設(shè)水管的總費用為W.
(1)求W關(guān)于α的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角α.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com