如圖,在三棱錐中,底面,點,分別在棱上,且 

(Ⅰ)求證:平面;
(Ⅱ)當的中點時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點使得二面角為直二面角?若存在,請確定點E的位置;若不存在,請說明理由.

(1)只需證PA⊥BC,AC⊥BC即可;(2);(3)故存在點E使得二面角是直二面角,此時。

解析試題分析:(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
,∴AC⊥BC.
∴BC⊥平面PAC.             4分
(Ⅱ)∵D為PB的中點,DE//BC,
,
又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足為點E.
∴∠DAE是AD與平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP為等腰直角三角形,∴
∴在Rt△ABC中,,∴.
∴在Rt△ADE中,,
與平面所成的角的大小.                9分
(Ⅲ)∵DE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP為二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴
∴在棱PC上存在一點E,使得AE⊥PC,這時
故存在點E使得二面角是直二面角.
此時        14分
考點:線面垂直的判定定理;線面垂直的性質定理;線面角;二面角。
點評:本題主要考查了直線與平面所成的角以及二面角,屬立體幾何中的?碱}型,較難.充分考查了學生的邏輯推理能力,空間想象力,以及識圖能力。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分別是的中點。

(1)證明:平面平面;
(2)證明:平面ABE;
(3)設P是BE的中點,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,,,,的中點.

求證:(1)∥平面;
(2)⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)三棱錐中,,,

(Ⅰ)求證:平面平面;
(Ⅱ)當時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在組合體中,ABCD—A1B1C1D1是一個長方體,P—ABCD是一個四棱錐.AB=2,BC=3,點P平面CC1D1D,且PC=PD=

(1)證明:PD平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若,當a為何值時,PC//平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在五面體ABCDEF中,,,,

(Ⅰ)求異面直線BF與DE所成角的余弦值;
(Ⅱ)在線段CE上是否存在點M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分6分)
如圖,在邊長為的菱形中,,,分別是的中點.

(1)求證: 面;
(2)求證:平面⊥平面;
(3)求與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,點、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,

(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大;
(Ⅲ)當的長為何值時,平面與平面所成的銳二面角的大小為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,正三棱柱ABC—A1B1C1中,D是BC的中點,AA1=AB=1.

(I)求證:A1C//平面AB1D;
(II)求二面角B—AB1—D的大;
(III)求點C到平面AB1D的距離.

查看答案和解析>>

同步練習冊答案