如果OA∥O′A′,OB∥O′B′,那么∠AOB和∠A′O′B′的關(guān)系為
相等或互補
相等或互補
分析:根據(jù)直線平行的性質(zhì)判斷∠AOB和∠A′O′B′的關(guān)系即可.
解答:解:若∠AOB和∠A′O′B′的在同一平面內(nèi),
則根據(jù)兩直線平行,內(nèi)錯角相等,
可得:∠AOB=∠A'MB=∠A'O'B',
∠COB=∠O'MB
則∠A'MB+∠O'MB=180°,
既有:∠COB+∠A′O′B′=180°,
即∠AOB和∠A′O′B′的關(guān)系為相等或互補.
若∠AOB和∠A′O′B′的不在同一平面內(nèi),
則根據(jù)平行直線的性質(zhì)可知,結(jié)論同樣成立.
故答案為:相等或互補.
點評:本題主要考查直線平行的性質(zhì),比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設拋物線y2=8x,O為坐標原點,點A,B是拋物線上的點,
(1)如果OA、OB的斜率分別為
12
,-2,求直線AB與x軸的交點坐標;
(2)如果OA⊥OB,求證:直線AB必過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線的方程為y2=8x,O為坐標原點,點A,B是拋物線上的點.如果OA⊥OB,求證:直線AB必過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(0,4)、斜率為-1的直線與拋物線y2=2px(p>0)交于兩點A,B,如果OA⊥OB(O為原點)求P的值及拋物線的焦點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果OA∥O′A′,OB∥O′B′,那么∠AOB與∠A′O′B′(    )

A.相等            B.互補            C.相等或互補            D.大小無關(guān)

查看答案和解析>>

同步練習冊答案