7.等差數(shù)列{an}中,a5=15,則a3+a4+a5+a8的值為( 。
A.30B.45C.60D.120

分析 根據(jù)等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d,進(jìn)行化簡(jiǎn)計(jì)算即可.

解答 解:等差數(shù)列{an}中,
a5=a1+4d=15,
所以a3+a4+a5+a8=(a1+2d)+(a1+3d)+15+(a1+7d)
=3(a1+4d)+15
=3×15+15
=60.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.雙曲線$\frac{x^2}{4}$-$\frac{y^2}{5}$=1的焦點(diǎn)坐標(biāo)是(-3,0),(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=lg(3+2x-x2)的定義域?yàn)榧螦,集合B={x|m-1<x<2m+1}.
(1)求集合A;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=sinα+cosα}\\{y=sinα-cosα}\end{array}\right.$ (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O(shè)為極點(diǎn),x正半軸為極軸的極坐標(biāo)系中,直線l方程為$\sqrt{2}$ρsin($\frac{π}{4}$-θ)+1=0,已知直線l與曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知長(zhǎng)方體ABCD-A'B'C'D'中,AB=4,AD=3,AA'=2;
(1)求出異面直線AC'和BD所成角的余弦值;
(2)找出AC'與平面D'DBB'的交點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=x2-2ax+5(a>1).
(Ⅰ)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(Ⅱ)若f(x)在區(qū)間(-∞,2]上是減函數(shù),求f(x)在區(qū)間[1,a+1]上的最小值和最大值;
(Ⅲ) 若f(x)在區(qū)間(1,3)上有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=lg(mx-1)在[2,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍為$({\frac{1}{2},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.執(zhí)行如圖所示的框圖,輸出值x=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},x<1\\ f(x-1),x≥1\end{array}$則f(log23)的值是$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案