等差數(shù)列{an}前9項的和等于前4項的和.若a1=1,ak+a4=0,則k=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對角線AC與BD的交點(diǎn),M是PD的中點(diǎn),AB=2,∠BAD=60°.
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC;
(3)當(dāng)四棱錐P-ABCD的體積等于時,求PB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題
已知點(diǎn)P(x,y)是直線kx+y+4=0(k>0)上一動點(diǎn),PA,PB是圓C:x2+y2-2y=0的兩條切線,A,B為切點(diǎn),若四邊形PACB的最小面積是2,則k的值為( ).
A.4 B.3 C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷4練習(xí)卷(解析版) 題型:選擇題
如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=BC=1,動點(diǎn)P,Q分別在線段C1D,AC上,則線段PQ長度的最小值是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷3練習(xí)卷(解析版) 題型:解答題
已知等差數(shù)列{an}滿足:a2=5,a4+a6=22,數(shù)列{bn}滿足b1+2b2+…
+2n-1bn=nan,設(shè)數(shù)列{bn}的前n項和為Sn.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求滿足13<Sn<14的n的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷3練習(xí)卷(解析版) 題型:選擇題
若-9,a,-1成等差數(shù)列,-9,m,b,n,-1成等比數(shù)列,則ab=( ).
A.15 B.-15 C.±15 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:解答題
在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c.已知cos 2A-3cos(B+C)=1.
(1)求角A的大。
(2)若△ABC的面積S=5,b=5,求sin Bsin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:填空題
小王參加人才招聘會,分別向A,B兩個公司投遞個人簡歷.假定小王得到A公司面試的概率為,得到B公司面試的概率為p,且兩個公司是否讓其面試是獨(dú)立的,記X為小王得到面試的公司個數(shù).若X=0時的概率P(X=0)=,則隨機(jī)變量X的數(shù)學(xué)期望為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:解答題
已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點(diǎn).
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個交點(diǎn),求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com