設(shè)函數(shù)f(x)=x2-1,對任意x∈,f-4m2f(x)≤f(x-1)+4f(m)恒成立,則實數(shù)m的取值范圍是________.
m≤-或m≥
由題意知-1-4m2(x2-1)≤(x-1)2-1+4(m2-1)在x∈上恒成立,
-4m2≤-+1在x∈上恒成立,當x=時,函數(shù)y=-+1取得最小值-,所以-4m2≤-,即(3m2+1)(4m2-3)≥0,
解得m≤-或m≥.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若對于區(qū)間內(nèi)的任意,總有成立,求實數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間內(nèi)有兩個不同的零點,求:
①實數(shù)的取值范圍; ②的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x),當x∈[0,2]時,f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù);
(2)當x∈[2,4]時,求f(x)的解析式;
(3)計算f(0)+f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求實數(shù)m的取值范圍;
(2)若方程兩根均在區(qū)間(0,1)內(nèi),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+mx+n的圖象過點(1,3),且f(-1+x)=f(-1-x)對任意實數(shù)都成立,函數(shù)y=g(x)與y=f(x)的圖象關(guān)于原點對稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用min{a,b,c}表示a,b,c三個數(shù)中的最小值.設(shè)f(x)=min{2x,x+2,10-x}(x≥0),則f(x)的最大值為(  )
A.4B.5
C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于函數(shù),若為某一三角形的三邊長,則稱為“可構(gòu)造三角形函數(shù)”.已知函數(shù)是“可構(gòu)造三角形函數(shù)”,則實數(shù)t的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)和g(x)分別由下表給出:
x
1
2
3
4
x
1
2
3
4
f(x)
2
3
4
1
g(x)
2
1
4
3
則f(g(1))=____________,滿足g(f(x))=1的x值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在不考慮空氣阻力的情況下,火箭的最大速度v(單位:m/s)和燃料的質(zhì)量M(單位:kg)、火箭(除燃料外)的質(zhì)量m(單位:kg)的函數(shù)關(guān)系式為v=2000ln.當燃料質(zhì)量是火箭質(zhì)量的________倍時,火箭的最大速度可以達到12km/s.

查看答案和解析>>

同步練習(xí)冊答案