已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且.圓的方程是
(1)求雙曲線的方程;
(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
(3)過圓上任意一點(diǎn)作圓的切線交雙曲線、兩點(diǎn),中點(diǎn)為,求證:
(1) ;(2);(3)證明見解析.

試題分析:(1)從雙曲線方程中發(fā)現(xiàn)只有一個參數(shù),因此我們只要找一個關(guān)系式就可求解,而這個關(guān)系式在中,,,,通過直角三角形的關(guān)系就可求得;(2)由(1)知雙曲線的漸近線為,這兩條漸近線在含雙曲線那部分的夾角為鈍角,因此過雙曲線上的點(diǎn)作該雙曲線兩條漸近線的垂線為銳角,這樣這題我們只要認(rèn)真計算,設(shè)點(diǎn)坐標(biāo)為,由點(diǎn)到直線距離公式求出距離,利用兩條直線夾角公式求出,從而得到向量的數(shù)量積;(3)首先 等價于,因此設(shè),我們只要證,而可以由切線的方程與雙曲線方程聯(lián)立方程組得到,再借助切線方程得到,驗(yàn)證下是否有,注意上述情形是在時進(jìn)行的,而時,切線為,直接驗(yàn)證即可.
試題解析:(1)設(shè)的坐標(biāo)分別為
因?yàn)辄c(diǎn)在雙曲線上,所以,即,所以 
中,,,所以           2分
由雙曲線的定義可知:
故雙曲線的方程為:                                     4分
(2)由條件可知:兩條漸近線分別為        5分
設(shè)雙曲線上的點(diǎn),設(shè)兩漸近線的夾角為,則
則點(diǎn)到兩條漸近線的距離分別為   7分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034443270659.png" style="vertical-align:middle;" />在雙曲線上,所以
,
所以        10分
(3)由題意,即證:。
設(shè),切線的方程為:                   11分
①當(dāng)時,切線的方程代入雙曲線中,化簡得:

所以:
  13分
所以            15分
②當(dāng)時,易知上述結(jié)論也成立. 所以        16分
綜上,,所以
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)M(2,1),平行于OM的直線ly軸上的截距為m,直線l與橢圓相交于A,B兩個不同點(diǎn).

(1)求實(shí)數(shù)m的取值范圍;
(2)證明:直線MA,MBx軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的一條漸近線方程是,它的一個焦點(diǎn)在拋物線的準(zhǔn)線上,點(diǎn)是雙曲線右支上相異兩點(diǎn),且滿足為線段的中點(diǎn),直線的斜率為
(1)求雙曲線的方程;
(2)用表示點(diǎn)的坐標(biāo);
(3)若,的中垂線交軸于點(diǎn),直線軸于點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△的兩個頂點(diǎn)的坐標(biāo)分別是,,且所在直線的斜率之積等于
(1)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當(dāng)時,過點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對稱點(diǎn)為(不重合), 試問:直線軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)一個焦點(diǎn)為,且離心率的橢圓上下兩頂點(diǎn)分別為,直線交橢圓兩點(diǎn),直線與直線交于點(diǎn).
(1)求橢圓的方程;
(2)求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在直線上運(yùn)動,過點(diǎn)垂直的直線和線段的垂直平分線相交于點(diǎn)
(1)求動點(diǎn)的軌跡的方程;
(2)過(1)中的軌跡上的定點(diǎn)作兩條直線分別與軌跡相交于,兩點(diǎn).試探究:當(dāng)直線,的斜率存在且傾斜角互補(bǔ)時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F是橢圓C:+=1(a>b>0)的右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF與圓(x-2+y2=相切于點(diǎn)Q,且=2,則橢圓C的離心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,F(xiàn)1,F(xiàn)2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn),A,B分別是C1,C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形, 則C2的離心率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1=1,橢圓C2C1的短軸為長軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)直線l與橢圓C2相交于不同的兩點(diǎn)A、B,已知A點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且=4,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案