【題目】已知函數(shù), .

1求函數(shù)的單調(diào)區(qū)間;

2若不等式區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;

3求證:

【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)

3)見解析.

【解析】試題分析:1求出,,結(jié)合函數(shù)的定義域解得的范圍就是函數(shù)的增區(qū)間;(2問題轉(zhuǎn)化為大于等于的最大值,利用導(dǎo)數(shù)求得函數(shù)有最大值且最大值為,得到;(3)先判斷,用放縮法證明,即得要證的不等式.

試題解析:(1)∵,故其定義域?yàn)?/span>

,令,得,令,得.

故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

2 ,,令

,令解得.

當(dāng)內(nèi)變化時(shí), , 變化如下表

+

0

-

由表知,當(dāng)時(shí)函數(shù)有最大值,且最大值為,所以,

3)由(2)知,

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、證明不等式以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題(2)是利用方法 ① 求得的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知四棱錐中, 平面,底面是菱形,且 、的中點(diǎn)分別為,

)求證

)求二面角的余弦值.

)在線段上是否存在一點(diǎn),使得平行于平面?若存在,指出上的位置并給予證明,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】讀下列各題所給的程序,依據(jù)程序畫出程序框圖,并說明其功能:

(1)INPUT “x=”;x

IF x>1 OR x<-1 THEN

y=1

ELSE y=0

END IF

PRINE y

END

(2)INPUT “輸入三個(gè)正數(shù)a,b,c=”;a,b,c

IF a+b>c AND a+c>b AND b+c>a THEN

p=(a+b+c)/2

S=SQR(p*(p-a)*(p-b)*(p-c))

PRINT “三角形的面積S=”S

ELSE

PRINT “構(gòu)不成三角形”

END IF

END

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測(cè)得一輪船在島北偏東30°,俯角為30°B處,到11時(shí)10分又測(cè)得該船在島北偏西60°,俯角為60°C處.

(1)求船的航行速度是每小時(shí)多少千米?

(2)又經(jīng)過一段時(shí)間后,船到達(dá)海島的正西方向的D處,問此時(shí)船距島A有多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為常數(shù)).

() 函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象相切,求實(shí)數(shù)的值;

(Ⅱ) 若, ,且,都有成立,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),向量 ,經(jīng)過點(diǎn),以為方向向量的直線與經(jīng)過點(diǎn),以為方向向量的直線交于點(diǎn),其中

)求點(diǎn)的軌跡方程,并指出軌跡

)若點(diǎn),當(dāng)時(shí), 為軌跡上任意一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,

當(dāng)時(shí), 的零點(diǎn)為______;(將結(jié)果直接填寫在橫線上)

當(dāng)時(shí),如果存在,使得,試求的取值范圍;

Ⅲ)如果對(duì)于任意,都有成立,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,離心率為,且點(diǎn)在該橢圓上。

(I)求橢圓C的方程;

(II)過橢圓C的左焦點(diǎn)的直線l與橢圓C相交于兩點(diǎn),若的面積為,求圓心在原點(diǎn)O且與直線l相切的圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在棱錐中, 為矩形, , , 與面角, 與面角.

1)在上是否存在一點(diǎn),使,若存在確定點(diǎn)位置,若不存在,請(qǐng)說明理由;

2)當(dāng)中點(diǎn)時(shí),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案