已知實數(shù)x,y滿足如果目標函數(shù)z=x-y最小值的取值范圍是[-2,-1],則目標函數(shù)最大值的取值范圍是(  )

A.[1,2]     B.[3,6]     C.[5,8]     D.[7,10]

B.(x,y)滿足的區(qū)域如圖.

變換目標函數(shù)為y=x-z,當z最小時就是直線y=x-z在y軸上的截距最大時.當z的最小值為-1時,直線為y=x+1,此時點A的坐標是(2,3),此時m=2+3=5;當z=-2時,直線為y=x+2,此時點A的坐標是(3,5),此時m=3+5=8.故m的取值范圍是[5,8].目標函數(shù)的最大值在點B(m-1,1)取得,即zmax=m-1-1=m-2,故目標函數(shù)最大值的取值范圍是[3,6].

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設(shè)CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇)A.[選修4-1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
B.[選修4-2:矩陣與變換]
已知矩陣A的逆矩陣A-1=
-
1
4
3
4
1
2
-
1
2
,求矩陣A的特征值.
C.[選修4-4:坐標系與參數(shù)方程]
在極坐標中,已知圓C經(jīng)過點P(
2
,
π
4
),圓心為直線ρsin(θ-
π
3
)=-
3
2
與極軸的交點,求圓C的極坐標方程.
D.[選修4-5:不等式選講]
已知實數(shù)x,y滿足:|x+y|<
1
3
,|2x-y|<
1
6
,求證:|y|<
5
18

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設(shè)CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2sin(),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設(shè)CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2sin(),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江蘇省高考數(shù)學試卷(解析版) 題型:解答題

A.[選修4-1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
B.[選修4-2:矩陣與變換]
已知矩陣A的逆矩陣,求矩陣A的特征值.
C.[選修4-4:坐標系與參數(shù)方程]
在極坐標中,已知圓C經(jīng)過點P(),圓心為直線ρsin(θ-)=-與極軸的交點,求圓C的極坐標方程.
D.[選修4-5:不等式選講]
已知實數(shù)x,y滿足:|x+y|<,|2x-y|<,求證:|y|<

查看答案和解析>>

同步練習冊答案