A.[選修4-1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
B.[選修4-2:矩陣與變換]
已知矩陣A的逆矩陣,求矩陣A的特征值.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)中,已知圓C經(jīng)過(guò)點(diǎn)P(),圓心為直線ρsin(θ-)=-與極軸的交點(diǎn),求圓C的極坐標(biāo)方程.
D.[選修4-5:不等式選講]
已知實(shí)數(shù)x,y滿足:|x+y|<,|2x-y|<,求證:|y|<

【答案】分析:A.要證∠E=∠C,就得找一個(gè)中間量代換,一方面考慮到∠B,∠E是同弧所對(duì)圓周角,相等;另一方面根據(jù)線段中垂線上的點(diǎn)到線段兩端的距離相等和等腰三角形等邊對(duì)等角的性質(zhì)得到.從而得證.
B.由矩陣A的逆矩陣,根據(jù)定義可求出矩陣A,從而求出矩陣A的特征值.
C.根據(jù)圓心為直線ρsin(θ-)=-與極軸的交點(diǎn)求出的圓心坐標(biāo);根據(jù)圓經(jīng)過(guò)點(diǎn)P(,),求出圓的半徑,從而得到圓的極坐標(biāo)方程.
D.根據(jù)絕對(duì)值不等式的性質(zhì)求證.
解答:A.證明:連接 AD.
∵AB是圓O的直徑,∴∠ADB=90°(直徑所對(duì)的圓周角是直角).
∴AD⊥BD(垂直的定義).
又∵BD=DC,∴AD是線段BC 的中垂線(線段的中垂線定義).
∴AB=AC(線段中垂線上的點(diǎn)到線段兩端的距離相等).
∴∠B=∠C(等腰三角形等邊對(duì)等角的性質(zhì)).
又∵D,E 為圓上位于AB異側(cè)的兩點(diǎn),
∴∠B=∠E(同弧所對(duì)圓周角相等).
∴∠E=∠C(等量代換).
B、解:∵矩陣A的逆矩陣,∴A=
∴f(λ)=2-3λ-4=0
∴λ1=-1,λ2=4
C、解:∵圓心為直線ρsin(θ-)=-與極軸的交點(diǎn),
∴在ρsin(θ-)=-中令θ=0,得ρ=1.∴圓C的圓心坐標(biāo)為(1,0).
∵圓C 經(jīng)過(guò)點(diǎn)P(,),∴圓C的半徑為PC=1.
∴圓 的極坐標(biāo)方程為ρ=2cosθ.
D、證明:∵3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+2|2x-y|,:|x+y|<,|2x-y|<,
∴3|y|<,

點(diǎn)評(píng):本題是選作題,綜合考查選修知識(shí),考查幾何證明選講、矩陣與變換、坐標(biāo)系與參數(shù)方程、不等式證明,綜合性強(qiáng)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,過(guò)
N點(diǎn)的切線交CA的延長(zhǎng)線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長(zhǎng).
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實(shí)數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
D.選修4-5:不等式選講
設(shè)a,b,c均為正實(shí)數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1 幾何證明選講
如圖,⊙O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
B.選修4-2 矩陣與變換
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.
C.選修4-4 坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,
曲線C1ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
D.選修4-5 不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)請(qǐng)考生在A、B、C三題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí)請(qǐng)寫(xiě)清題號(hào).
A.選修4-1(幾何證明選講)已知AD為圓O的直徑,直線BA與圓O相切與點(diǎn)A,直線OB與弦AC垂直并相交于點(diǎn)G,與弧AC相交于M,連接DC,AB=10,AC=12.
(Ⅰ)求證:BA•DC=GC•AD;(Ⅱ)求BM.
B.選修4-4(坐標(biāo)系與參數(shù)方程)求直線
x=1+4t
y=-1-3t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長(zhǎng).
C.選修4-5(不等式選講)(Ⅰ)求函數(shù)y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講
如圖,AD是∠BAC的平分線,⊙O過(guò)點(diǎn)A且與BC邊相切于點(diǎn)D,與AB、AC分別交于E,F(xiàn),求證:EF∥BC.

B.選修4-2:矩陣與變換
已知a,b∈R若矩陣M=
.
-1a
b3
.
所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.

C.選修4-4:坐標(biāo)系與參數(shù)方程
將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t為參數(shù))化為普通方程.
D.選修4-5:不等式選講
已知a,b是正數(shù),求證:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇)A.[選修4-1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
B.[選修4-2:矩陣與變換]
已知矩陣A的逆矩陣A-1=
-
1
4
3
4
1
2
-
1
2
,求矩陣A的特征值.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)中,已知圓C經(jīng)過(guò)點(diǎn)P(
2
,
π
4
),圓心為直線ρsin(θ-
π
3
)=-
3
2
與極軸的交點(diǎn),求圓C的極坐標(biāo)方程.
D.[選修4-5:不等式選講]
已知實(shí)數(shù)x,y滿足:|x+y|<
1
3
,|2x-y|<
1
6
,求證:|y|<
5
18

查看答案和解析>>

同步練習(xí)冊(cè)答案