若函數(shù)f(x)=cos(3x-θ)-sin(3x-θ)為奇函數(shù),則θ等于( )
A.kπ(k∈Z)
B.
C.
D.
【答案】分析:根據(jù)輔導(dǎo)角公式,我們可以將已知中的函數(shù)f(x)=cos(3x-θ)-sin(3x-θ)解析式化為正弦型函數(shù)的形式,進(jìn)而根據(jù)正弦函數(shù)的對稱性,結(jié)合函數(shù)奇偶性的性質(zhì)得到到f(0)=0,進(jìn)而解三角方程即可求出對應(yīng)θ的值.
解答:解:∵函數(shù)f(x)=cos(3x-θ)-sin(3x-θ)=2sin(3x--θ)
若函數(shù)f(x)=cos(3x-θ)-sin(3x-θ)為奇函數(shù),
則sin(--θ)=0
+θ=kπ-,k∈Z
∴θ=
故選D
點評:本題考查的知識點是余弦函數(shù)的奇偶性,其中利用輔助角公式,將函數(shù)的解析式化為正弦型函數(shù)的形式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

www.ks5u.co

已知函數(shù)

   (I)當(dāng)a<0時,求函數(shù)的單調(diào)區(qū)間;

   (II)若函數(shù)f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

同步練習(xí)冊答案