設(shè)函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,則
A.x1>-1 | B.x2<0 | C.x2>0 | D.x3>2 |
C
解析試題分析:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的極值,再根據(jù)f (x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,求得各個(gè)零點(diǎn)所在的區(qū)間,從而得出結(jié)論.
∵函數(shù)f (x)=x3-4x+a,0<a<2,
∴f′(x)=3x2-4.令f′(x)=0,得 x=±
當(dāng)x<-時(shí),則f′(x)>0;在(-,)上,f′(x)<0;在(,+),f′(x)>0.故可知函數(shù)零點(diǎn),再由f (x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,
x1<-,,-< x2<, x3>且可知根據(jù)f(0)=a>0,f()<0因此可知選C.
考點(diǎn):函數(shù)零點(diǎn)
點(diǎn)評(píng):本題主要考查函數(shù)的零點(diǎn)的定義,函數(shù)的零點(diǎn)與方程的根的關(guān)系,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的極值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知函數(shù),若數(shù)列滿足,且對(duì)任意正整數(shù)都有成立,則實(shí)數(shù)的取值范圍是( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
函數(shù)y=f(x),x∈D,若存在常數(shù)C,對(duì)任意的xl∈D,仔在唯一的x2∈D,使得 ,則稱函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=x3,x∈[1,2],則函數(shù)f(x)=x3在[1,2]上的幾何平均數(shù)為
A. B.2 C.4 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
下列各組函數(shù)是同一函數(shù)的是( )
①與; ②與;
③與; ④與。
A.①② | B.①③ | C.③④ | D.①④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com