在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(3,3),B(5,1),P(2,1),點(diǎn)M是直線OP上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)求數(shù)學(xué)公式的值;
(Ⅱ)若四邊形APBM是平行四邊形,求點(diǎn)M的坐標(biāo);
(Ⅲ)求數(shù)學(xué)公式的最小值.

解:(Ⅰ)∵點(diǎn)A(3,3),B(5,1),P(2,1),
,,

=
(Ⅱ)設(shè)點(diǎn)M(x,y).
∵四邊形APBM是平行四邊形,∴,
∴(1,2)=(x-5,y-1),∴,解得
∴M(6,3).
(Ⅲ)設(shè)點(diǎn)M(x,y).

由題意
∴x-2y=0,即x=2y.
∴M(2y,y).
=(3-2y,3-y)•(5-2y,1-y)
=5y2-20y+18
=5(y-2)2-2.
∴當(dāng)y=2時(shí),取得最小值-2,此時(shí)M(4,2).
分析:(Ⅰ)利用向量的坐標(biāo)運(yùn)算和模的計(jì)算公式即可得出;
(Ⅱ)利用平行四邊形的性質(zhì)、向量共線的性質(zhì)及其坐標(biāo)坐標(biāo)運(yùn)算即可得出;
(Ⅲ)利用向量共線和二次函數(shù)的單調(diào)性即可得出.
點(diǎn)評(píng):熟練掌握向量的坐標(biāo)運(yùn)算和模的計(jì)算公式、平行四邊形的性質(zhì)、向量共線的性質(zhì)、向量共線定理和二次函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,雙曲線中心在原點(diǎn),焦點(diǎn)在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立相應(yīng)的極坐標(biāo)系.在此極坐標(biāo)系中,若圓C的極坐標(biāo)方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程) 在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點(diǎn)為極點(diǎn),射線ox為極軸建立極坐標(biāo)系,則圓C的圓心的極坐標(biāo)為
 
,圓C的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣東)在平面直角坐標(biāo)系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點(diǎn),則弦AB的長(zhǎng)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).
(Ⅰ)若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案