【題目】已知函數(shù)f(x)= ,若F(x)=f[f(x)+1]+m有兩個零點x1 , x2 , 則x1x2的取值范圍是( )
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞, )
【答案】D
【解析】解:當x≥1時,f(x)=lnx≥0, ∴f(x)+1≥1,
∴f[f(x)+1]=ln(f(x)+1),
當x<1,f(x)=1﹣ > ,f(x)+1> ,
f[f(x)+1]=ln(f(x)+1),
綜上可知:F[f(x)+1]=ln(f(x)+1)+m=0,
則f(x)+1=e﹣m , f(x)=e﹣m﹣1,有兩個根x1 , x2 , (不妨設(shè)x1<x2),
當x≥1是,lnx2=e﹣m﹣1,當x<1時,1﹣ =e﹣m﹣1,
令t=e﹣m﹣1> ,則lnx2=t,x2=et , 1﹣ =t,x1=2﹣2t,
∴x1x2=et(2﹣2t),t> ,
設(shè)g(t)=et(2﹣2t),t> ,
求導g′(t)=﹣2tet ,
t∈( ,+∞),g′(t)<0,函數(shù)g(t)單調(diào)遞減,
∴g(t)<g( )= ,
∴g(x)的值域為(﹣∞, ),
∴x1x2取值范圍為(﹣∞, ),
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明:PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值;
(3)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
平面直角坐標系xOy中,曲線C:.直線l經(jīng)過點P(m,0),且傾斜角為.O為極點,以x軸正半軸為極軸,建立極坐標系.
(Ⅰ)寫出曲線C的極坐標方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋時期的著名數(shù)學家秦九韶在他的著作《數(shù)學九章》中提出了秦九韶算法來計算多項式的值,在執(zhí)行如圖算法的程序框圖時,若輸入的n=5,x=2,則輸出V的值為( )
A.15
B.31
C.63
D.127
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上的一點與兩個焦點構(gòu)成的三角形周長為.
(1)求橢圓的方程;
(2)已知直線與橢圓相交于兩點.
①若線段中點的橫坐標為,求的值;
②在軸上是否存在點,使為定值?若是,求點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.
(1)求的通項公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個數(shù)字,這8個數(shù)字各不相同,且奇數(shù)有3個,偶數(shù)有5個.每張卡片被取出的概率相等.
(Ⅰ)如果從盒子中一次隨機取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個新數(shù),求所得新數(shù)是偶數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中一次隨機取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設(shè)取出了次才停止取出卡片,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的最小值是1,且.
(1)求函數(shù)的解析式;
(2)若,試求的最小值;
(3)若在區(qū)間上,的圖像恒在的圖像上方,試確定實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com