函數(shù)y=lnx-2x的單調(diào)增區(qū)間是
 
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出f(x)的導(dǎo)函數(shù),f′(x)>0的解集即為函數(shù)f(x)的單調(diào)增區(qū)間.
解答: 解:f(x)的定義域為:(0,+∞),
f(x)=
1
x
-2
=
1-2x
x

由f′(x)>0,得0<x<
1
2
,
∴f(x)的單調(diào)遞增區(qū)間為:(0,
1
2
)
點評:本題考查的是利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,一定要考慮定義域.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=3,對于n∈N*,以an,an+1為系數(shù)的一元二次方程anx2-2an+1x+1=0都有實數(shù)根α,β,且滿足(α-1)(β-1)=2.
(Ⅰ)求證:數(shù)列{an-
1
3
}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5名志愿者被分配到3個體育場館參加志愿者活動,每個場館至少有一名志愿者,共有
 
種分配方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)滿足:2f(x)-f(
1
x
)=
3
x2
,則函數(shù)f(x)在區(qū)間[
1
2
,1]上的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線y=x+b是曲線y=alnx的切線,則當(dāng)a>0時,實數(shù)b的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)Z=-1+2i的共軛復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某地高中男生中隨機抽取100名同學(xué),將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖).從身高在[60,70),[70,80),[80,90]三組內(nèi)的男生中,用分層抽樣的方法選取12人參加一項活動,再從這12人選兩人當(dāng)正負(fù)隊長,則這兩人身高不在同一組內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=log2x,則在點(1,0)作函數(shù)圖象的切線,切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項式(
1
x
-2x2
9展開式中,各項系數(shù)的和為
 

查看答案和解析>>

同步練習(xí)冊答案