【題目】要得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

【答案】A
【解析】解:∵ =sin(2x+ )=sin[2(x+ )],
∴只需將函數(shù)y=sin2x的圖象向左平移 個單位即可得到函數(shù) 的圖象.
故選:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識可以得到問題的答案,需要掌握圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交警隨機(jī)抽取了途徑某服務(wù)站的40輛小型轎車在經(jīng)過某區(qū)間路段的車速(單位: ),現(xiàn)將其分成六組為后得到如圖所示的頻率分布直方圖.

(1)某小型轎車途經(jīng)該路段,其速度在以上的概率是多少?

(2)若對車速在兩組內(nèi)進(jìn)一步抽測兩輛小型轎車,求至少有一輛小型轎車速度在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要測量底部不能到達(dá)的電視塔AB的高度,在C點(diǎn)測得塔頂A的仰角是45°,在D點(diǎn)測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為(
A.40m
B.20m
C.305m
D.(20 ﹣40)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,設(shè)命題p:橢圓C: + =1的焦點(diǎn)在x軸上;命題q:直線l:x﹣y+m=0與圓O:x2+y2=9有公共點(diǎn). 若命題p、命題q中有且只有一個為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為.曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)兩個非零向量 不共線.
(1)若 = + , =2 +8 , =3( ).求證:A,B,D三點(diǎn)共線;
(2)試確定實(shí)數(shù)k,使k + +k 共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調(diào)減區(qū)間;
(2)已知△ABC的內(nèi)角分別是A,B,C,A為銳角,且f ,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線3x+4y﹣2=0與直線2x+y+2=0的交點(diǎn)P,且垂直于直線x﹣2y﹣1=0.
(1)求直線l的方程;
(2)求直線l關(guān)于原點(diǎn)O對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2+bx+c>0的解集為{x|﹣ <x<2},則cx2+bx+a<0的解集為

查看答案和解析>>

同步練習(xí)冊答案