【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1(x∈R) (Ⅰ)求函數(shù)f(x)的最小正周期及在區(qū)間[0, ]上的最大值和最小值;
(Ⅱ)若f(x0)= ,x0∈[ , ],求cos2x0的值.

【答案】解:(1)由f(x)=2 sinxcosx+2cos2x﹣1,得 f(x)= (2sinxcosx)+(2cos2x﹣1)= sin2x+cos2x=2sin(2x+
所以函數(shù)f(x)的最小正周期為π.
因為f(x)=2sin(2x+ )在區(qū)間[0, ]上為增函數(shù),在區(qū)間[ , ]上為減函數(shù),
又f(0)=1,f( )=2,f( )=﹣1,所以函數(shù)f(x)在區(qū)間[0, ]上的最大值為2,最小值為﹣1.
(Ⅱ)由(1)可知f(x0)=2sin(2x0+
又因為f(x0)= ,所以sin(2x0+ )=
由x0∈[ ],得2x0+ ∈[ , ]
從而cos(2x0+ )=﹣ =﹣
所以
cos2x0=cos[(2x0+ )﹣ ]=cos(2x0+ )cos +sin(2x0+ )sin =
【解析】先將原函數(shù)化簡為y=Asin(ωx+φ)+b的形式(1)根據(jù)周期等于2π除以ω可得答案,又根據(jù)函數(shù)圖像和性質可得在區(qū)間[0, ]上的最值.(2)將x0代入化簡后的函數(shù)解析式可得到sin(2x0+ )= ,再根據(jù)x0的范圍可求出cos(2x0+ )的值, 最后由cos2x0=cos(2x0+ )可得答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=log3x,
(1)求f(x)的解析式;
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(1,0), =(2,1).
(1)求 +3 的坐標;
(2)當k為何實數(shù)時,k +3 平行,平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=(1-x2)ex.

(1)討論f(x)的單調(diào)性;

(2)當x0時,f(x)ax+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器和正四棱臺形玻璃容器的高均為32cm,容器的底面對角線AC的長為10cm,容器的兩底面對角線EG,E1G1的長分別為14cm和62cm. 分別在容器和容器中注入水,水深均為12cm. 現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)

(1)將l放在容器中,l的一端置于點A處,另一端置于側棱CC1上,求l沒入水中部分的長度;

(2)將l放在容器中,l的一端置于點E處,另一端置于側棱GG1上,求l沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x),將f(x)圖像沿x軸向右平移 個單位,然后把所得到圖像上每一點的縱坐標保持不變,橫坐標擴大到原來的2倍,這樣得到的曲線與y=2sin(x﹣ )的圖像相同,那么y=f(x)的解析式為( )
A.f(x)=2sin(2x﹣
B.f(x)=2sin(2x﹣
C.f(x)=2sin(2x+
D.f(x)=2sin(2x+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 ,g(x)=ax+5﹣2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分15分)如圖,已知四棱錐PABCD,PAD是以AD為斜邊的等腰直角三角形,BCADCDAD,PC=AD=2DC=2CB,EPD的中點.

)證明:CE平面PAB

)求直線CE與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線 為參數(shù), ),在以坐標原點為極點, 軸的非負半軸為極軸的極坐標系中,曲線 .

(1)試將曲線化為直角坐標系中的普通方程,并指出兩曲線有公共點時的取值范圍;

(2)當時,兩曲線相交于, 兩點,求.

查看答案和解析>>

同步練習冊答案