14.如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),
在DM上取一點(diǎn)G,過(guò)G和AP作平面交平面BDM于GH.
(Ⅰ)求證:AP∥平面BDM;
(Ⅱ)若G為DM中點(diǎn),求證:$\frac{GH}{PA}$=$\frac{1}{4}$.

分析 (I)連結(jié)AC交BD于O,連結(jié)OM,由中位線定理可得PA∥OM,故AP∥平面BDM;
(II)利用線面平行的性質(zhì)可得GH∥PA,根據(jù)中位線定理即可得出結(jié)論.

解答 證明:(I)連結(jié)AC交BD于O,連結(jié)OM,
∵四邊形ABCD是平行四邊形,
∵O是AC的中點(diǎn),又M是PC的中點(diǎn),
∴OM∥PA,
又OM?平面BDM,PA?平面BDM,
∴PA∥平面PBD,
(II)∵PA∥平面BDM,PA?平面PAHG,平面PAHG∩平面BDM=HG,
∴PA∥HG,又PA∥OM,
∴HG∥OM,
∵G是DM的中點(diǎn),∴HG=$\frac{1}{2}$OM,
又OM=$\frac{1}{2}$PA,
∴HG=$\frac{1}{4}$PA,即$\frac{HG}{AP}=\frac{1}{4}$.

點(diǎn)評(píng) 本題考查了線面平行的判定與性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(2,tanα),則$\overrightarrow{AC}$等于( 。
A.(-2,3)B.(1,2)C.(4,3)D.(3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若y軸上存在點(diǎn)A(0,2),使得$\overrightarrow{AM}•\overrightarrow{AF}=0$,則p的值為( 。
A.2或8B.2C.8D.4或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),則f′(x)>0是f(x)遞增的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ax+lnx(a∈R),g(x)=x2-2x+2
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若?x1∈(0,+∞),均?x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若x=15°,則sin4x-cos4x的值為( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,已知AB=$\sqrt{3}$,AC=1,∠B=30°,則△ABC的面積是( 。
A.$\frac{\sqrt{3}}{2}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\sqrt{3}$或2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知a∈[2,4],直線l1:a2x+y-4a2-2=0,l2:x+ay-4-2a=0,l1交y軸的正半軸于A,l2交x軸的正半軸于B,l1、l2相交于點(diǎn)C,試求四邊形OACB面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)求定積分$\int_1^3{|x-2|dx}$
(2)若復(fù)數(shù)Z1=a+2i(a∈R),Z2=3-4i(i為虛數(shù)單位)且$\frac{{Z}_{1}}{{Z}_{2}}$為純虛數(shù),求|Z1|

查看答案和解析>>

同步練習(xí)冊(cè)答案