【題目】過兩直線3x+y﹣5=0,2x﹣3y+4=0的交點,且在兩坐標(biāo)軸上截距相等的直線方程為

【答案】2x﹣y=0或x+y﹣3=0
【解析】解:直線3x+y﹣5=0,2x﹣3y+4=0的交點為(1,2).
當(dāng)直線過原點時,直線的斜率k=2,
直線方程為y=2x,即2x﹣y=0;
當(dāng)直線不過原點時
設(shè)直線方程為x+y=a,代入點(1,2)得:1+2=a,即a=3.
∴直線方程為:x+y﹣3=0.
∴過兩直線3x+y﹣5=0,2x﹣3y+4=0的交點,且在兩坐標(biāo)軸上截距相等的直線方程為2x﹣y=0或x+y﹣3=0.
所以答案是:2x﹣y=0或x+y﹣3=0.
【考點精析】認真審題,首先需要了解截距式方程(直線的截距式方程:已知直線軸的交點為A,與軸的交點為B,其中).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線 ,在以坐標(biāo)原點為極點, 軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(Ⅰ)寫出, 的直角坐標(biāo)方程;

(Ⅱ)點, 分別是曲線 上的動點,且點軸的上側(cè),點軸的左側(cè), 與曲線相切,求當(dāng)最小時,直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, 底面, ,點分別在棱上,且平面.

(1)求證:

(2)求直線與平面所成角的正弦值.

(3)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , ,平面平面 為等腰直角三角形,

(1)證明: 為直角三角形;

(2)若四棱錐的體積為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切.
(1)求直線l1的方程;
(2)設(shè)圓O與x軸相交于P,Q兩點,M是圓O上異于P,Q的任意一點,過點A且與x軸垂直的直線為l2 , 直線PM交直線l2于點P′,直線QM交直線l2于點Q′.求證:以P′Q′為直徑的圓C總經(jīng)過定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點.

(1)求證:平面PAB∥平面EFG;
(2)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明;
(3)求出D到平面EFG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC的中點,它的正(主)視圖和側(cè)(左)視圖如圖所示.

(Ⅰ)求三棱錐P﹣ABD的體積.
(Ⅱ)在∠ACB的平分線所在直線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù).

(I)函數(shù)在點處的切線與直線垂直,求a的值;

(II)討論函數(shù)的單調(diào)性;

(III)不等式在區(qū)間上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱錐S﹣ABCD中,O為頂點在底面上的射影,P為側(cè)棱SD的中點,且SO=OD,則直線BC與平面PAC所成的角是

查看答案和解析>>

同步練習(xí)冊答案