【題目】如圖,在四棱錐P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點(diǎn).
(1)求證:平面PAB∥平面EFG;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明;
(3)求出D到平面EFG的距離.
【答案】
(1)證明:E,G分別是PC,BC的中點(diǎn)得EG∥PB
∴EG∥平面PAB
又E,F(xiàn)分別是PC,PD的中點(diǎn),
∴EF∥CD,又AB∥CD
∴EF∥AB
∵EFp平面PAB,AB平面PAB
∴EF∥平面PAB
又∵EG,EF平面EFG,EG∩EF=E
∴平面PAB∥平面EFG
(2)證明:Q為PB的中點(diǎn),連QE,DE,又E是PC的中點(diǎn),
∴QE∥BC,又BC∥AD∴QE∥AD
∴平面ADQ即平面ADEQ∴PD⊥DC,又PD=AB=2,ABCD是正方形,
∴等腰直角三角形PDC
由E為PC的中點(diǎn)知DE⊥PC
∵PD⊥平面ABCD
∴PD⊥AD又AD⊥DC
∴AD⊥面PDC
∴AD⊥PC,且AD∩DE=D
∴PC⊥平面ADEQ,即證PC⊥平面ADQ
(3)解:連DG,取AD中點(diǎn)H,連HG,HF,設(shè)點(diǎn)D到平面EFG的距離為h.H,G為AD,BC中點(diǎn)可知HG∥DC,又EF∥DC
∴HG∥EF
∴G到EF的距離即H到EF的距離
∵PD⊥DC,AD⊥DC
∴DC⊥面PAD,又EF∥DC
∴EF⊥面PAD
∴EF⊥HF
∴HF為G到EF的距離,由題意可知EF=1,HF= , =
∵AD⊥面PDC,GC∥AD
∴GC⊥面PDC
∴G到面EFD的距離為CG=1
又可知EF=DF=1,
∴
【解析】(1)由已知可得EG∥PB,從而可證EG∥平面PAB,則只要再證明EF∥平面PAB,即證EF∥AB,結(jié)合已知容易證,根據(jù)平面與平面平行的判定定理可得(2)若使得PC⊥平面ADQ,即證明PC⊥平面ADE,當(dāng)Q為PB的中點(diǎn)時(shí),PC⊥Ae,AD⊥PC即可(3)結(jié)合已知可考慮利用換頂點(diǎn)VD﹣EFG=VG﹣EFD , 結(jié)合已知可求
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=2,直線l:y=kx﹣2.
(1)若直線l與圓O交于不同的兩點(diǎn)A,B,且 ,求k的值;
(2)若 ,P是直線l上的動(dòng)點(diǎn),過(guò)P作圓O的兩條切線PC,PD,切點(diǎn)分別為C,D,求證:直線CD過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了支持生物課程基地研究植物生長(zhǎng),計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長(zhǎng)為x(m),三塊種植植物的矩形區(qū)域的總面積為S(m2).
(1)求S關(guān)于x的函數(shù)關(guān)系式;
(2)求S的最大值,及此時(shí)長(zhǎng)X的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)原點(diǎn)O,與x軸另一交點(diǎn)的橫坐標(biāo)為4,與y軸另一交點(diǎn)的縱坐標(biāo)為2,
(1)求圓C的方程;
(2)已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)兩直線3x+y﹣5=0,2x﹣3y+4=0的交點(diǎn),且在兩坐標(biāo)軸上截距相等的直線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的焦點(diǎn)在x軸上,離心率等于 ,且過(guò)點(diǎn)(1, ). (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)橢圓C的右焦點(diǎn)F作直線l交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),若 =λ1 , =λ2 ,求證:λ1+λ2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為an的一組正三角形AnBn﹣1Bn的底邊Bn﹣1Bn依次排列在x軸上(B0與坐標(biāo)原點(diǎn)重合).設(shè){an}是首項(xiàng)為a,公差為2的等差數(shù)列,若所有正三角形頂點(diǎn)An在第一象限,且均落在拋物線y2=2px(p>0)上,則a的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)( ,2)在冪函數(shù)f(x)的圖象上,點(diǎn)(2, )在冪函數(shù)g(x)的圖象上,定義h(x)= 求函數(shù)h(x)的最大值及單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com